<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 拉曼光譜新技術及應用巨獻:生物和化學材料前景廣闊

    分析測試百科網訊 2020年11月1日,由中國光學學會和中國化學會主辦的“第21屆全國分子光譜學學術會議”暨由中國光學會光譜專業委員會主辦的“2020年光譜年會”,在四川成都世外桃源酒店繼續召開。在第一天大會報告后,組委會安排了精彩的分會報道,分設了原子光譜新技術及應用、拉曼光譜新技術及應用、紅外光譜新技術及應用和熒光光譜新技術及應用5個分會場。分析測試百科網作為本次會議的合作媒體,為您帶來拉曼光譜新技術及應用會場的全程報道。分會場現場照片 上午場由北京大學童廉明教授,吉林大學徐抒平教授,武漢大學沈愛國教授,雷尼紹公司徐媛博士,廈門大學李劍鋒教授,西安交通大學方吉祥教授,上海師范大學楊海峰教授和天美公司徐濤濤博士帶來了精彩的大會報告。北京大學 童廉明教授 童廉明報告題目:二維材料的圓偏振拉曼散射光譜研究。共振拉曼散射分為放出電子電光過程,放出(吸收)電子電聲耦合和吸收光子廣電過程三個基本過程。二維材料的拉曼散射具有層數表......閱讀全文

    瑞利散射與拉曼散射的對比介紹

    當一束激發光的光子與作為散射中心的分子發生相互作用時,大部分光子僅是改變了方向,發生散射,而光的頻率仍與激發光源一致,這種散射稱為瑞利散射。但也存在很微量的光子不僅改變了光的傳播方向,而且也改變了光波的頻率,這種散射稱為拉曼散射。其散射光的強度約占總散射光強度的~。拉曼散射的產生原因是光子與分子之間

    拉曼散射的基本類型

    簡述拉曼散射的基本類型:對泵浦光和SRS光高度透明;具有較大的散射界面;能承受較高的入射泵浦強度。高效率的SRS可在很多分子氣體系統中產生,受激拉曼可以分別是基于這些分子的振動、振-轉或純轉動拉曼躍遷,工作氣壓通常在幾十個大氣壓以上,以獲得較高的增益因子。此外,利用某些金屬原子蒸氣作為介質,也可以產

    拉曼散射的基本類型

    簡述拉曼散射的基本類型:對泵浦光和SRS光高度透明;具有較大的散射界面;能承受較高的入射泵浦強度。高效率的SRS可在很多分子氣體系統中產生,受激拉曼可以分別是基于這些分子的振動、振-轉或純轉動拉曼躍遷,工作氣壓通常在幾十個大氣壓以上,以獲得較高的增益因子。此外,利用某些金屬原子蒸氣作為介質,也可以產

    拉曼散射的基本類型

    簡述拉曼散射的基本類型:對泵浦光和SRS光高度透明;具有較大的散射界面;能承受較高的入射泵浦強度。高效率的SRS可在很多分子氣體系統中產生,受激拉曼可以分別是基于這些分子的振動、振-轉或純轉動拉曼躍遷,工作氣壓通常在幾十個大氣壓以上,以獲得較高的增益因子。此外,利用某些金屬原子蒸氣作為介質,也可以產

    什么是表面增強拉曼散射

    表面增強拉曼散射 (surface enhancement of Raman scattering ),英文簡稱SERS。1974年M.Fleishmann等人測量到了電化學池中經過幾次氧化還原反應的銀表面吸附吡啶分子的拉曼散射線。1976年R.P.Vandyne等證實了上述實驗并推算出銀表面吸附的

    相干拉曼散射顯微術詳解-Ⅱ

    上節我們講到——相干拉曼散射(CRS)顯微術是一種基于分子化學鍵振動的成像手段。相比于熒光光譜,拉曼光譜具有窄得多的譜峰寬度(圖 1),可以選擇探測的分子種類將更多,特異性也更高。例如,生物組織中的蛋白、脂質和核酸等具有各自的拉曼光譜特征,利用 CRS 可以在無需染色/標記的前提下對它們進行

    拉曼光譜相關信息

    相關信息電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光) 激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱,

    電化學原位拉曼光譜法

    電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光)激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱, 為了獲得增強的信號,

    電化學原位拉曼光譜法

      電化學原位拉曼光譜法,是利用物質分子對入射光所產生的頻率發生較大變化的散射現象,將單色入射光(包括:圓偏振光和線偏振光)激發受電極電位調制的電極表面,通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱,為了獲得增強的信號,可

    石墨烯拉曼光譜測試詳解-(四)表面增強拉曼效應

    當一些分子吸附在特定的物質(如金和銀)的表面時,分子的拉曼光譜信號強度會出現明顯地增幅,我們把這種拉曼散射增強的現象稱為表面增強拉曼散射(Surface-enhanced Raman scattering,簡稱SERS)效應。SERS技術克服了傳統拉曼信號微弱的缺點,可以使拉曼強度增大幾個數

    什么是-電化學原位拉曼光譜法

    電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光) 激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱, 為了獲得增強的信號

    5分鐘了解全貌:拉曼光譜緣何成為儀器界寵兒

      現在,大家乘坐地鐵一定有這樣的體驗,安檢員直接把我們帶的水瓶放在一臺儀器上檢測,而不再像過去要求“喝一口”來“驗明正身”,該儀器就是可以透過包裝檢測的拉曼光譜。三星和蘋果的PR們今年都不斷放出消息刺激市場,要出一種無創檢測血糖的智能手表,采用的也是拉曼技術,只是遲遲未見真顏看來還頗有點兒難度。各

    拉曼光譜、紅外光譜、XPS的工作原理和應用(一)

    ? ? ? 拉曼光譜的原理及應用  拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:  CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小

    拉曼光譜的原理及應用

      拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:  CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的拉曼光譜儀。  1.

    拉曼光譜的原理及應用

      拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:  CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的拉曼光譜儀。1. 含

    拉曼光譜種類

    拉曼種類數種的拉曼光譜分析技術持續發展中,被用來增強靈敏度(表面增強拉曼效應)、改善空間性的分辨率(微拉曼光譜儀),或者取得特殊的分析訊號(共振拉曼光譜)。·?表面增強拉曼效應?通常以金或銀的膠體或者基板上附著金或銀的奈米粒子。金或銀粒子的表面等離子體共振由激光所激發,其結果產生增強金屬表面的電場。

    拉曼光譜技術

    1. 拉曼點掃面積有多大?顯微鏡物鏡出口的激光光斑的直徑約1-2微米。拉曼成像的區域大小更多取決于自動平臺的移動范圍,尺度和自動平臺相關,有75X50mm,100X80mm,300X300mm等選擇。2. 表面增強拉曼能否表征金膜表面修飾的單分子層自組裝膜的形態?如膜的缺陷可以,前提是你的單分子膜有

    新型表面增強拉曼基底可用于檢測水中農藥殘留

      近期,固體所孟國文研究員小組與美國西弗吉尼亞大學吳年強教授小組及技術生物所黃青研究員小組合作,在銀納米棒簇有序陣列構筑及基于其表面增強拉曼散射(SERS)效應檢測水中農藥殘留方面取得進展,相關成果以卷首插畫論文發表在《先進材料》(Adv. Mater. 2016, 28, 4871-4876)上

    關于拉曼光譜的拉曼效應介紹

      光照射到物質上發生彈性散射和非彈性散射. 彈性散射的散射光是與激發光波長相同的成分.非彈性散射的散射光有比激發光波長長的和短的成分, 統稱為拉曼效應。  當用波長比試樣粒徑小得多的單色光照射氣體、液體或透明試樣時,大部分的光會按原來的方向透射,而一小部分則按不同的角度散射開來,產生散射光。在垂直

    關于表面增強拉曼光譜的基本信息介紹

      拉曼散射效應非常弱,其散射光強度約為入射光強度的10-6~10-9,極大地限制了拉曼光譜的應用和發展。1974年Fleischmann等人發現吸附在粗糙金銀表面的tt旋分子的拉曼信號強度得到很大程度的提高,同時信號強度隨著電極所加電位的變化而變化。 1977 年,Jeanmaire 與 Van

    前沿技術-震撼新品|雷尼紹攜Virsa、RA816亮相光散射及SERS

      分析測試百科網訊 2019年11月3日-8日,第二十屆全國光散射學術會議(CNCLS 20)以及第二屆表面增強拉曼光譜國際會議(SERS-2019)接連在在蘇州同里湖大飯店進行。CNCLS 20和SERS-2019匯聚了世界頂級光散射和SERS科學家就相關熱點問題進行交流。CNCLS 20和SE

    拉曼光譜新技術及應用巨獻:生物和化學材料前景廣闊

      分析測試百科網訊 2020年11月1日,由中國光學學會和中國化學會主辦的“第21屆全國分子光譜學學術會議”暨由中國光學會光譜專業委員會主辦的“2020年光譜年會”,在四川成都世外桃源酒店繼續召開。在第一天大會報告后,組委會安排了精彩的分會報道,分設了原子光譜新技術及應用、拉曼光譜新技術及應用、紅

    固體所在對多氯聯苯拉曼信號敏感的納米結構方面取得進展

      近期,固體所科研人員在構筑對多氯聯苯敏感的納米結構表面增強拉曼散射襯底方面取得新進展,設計構筑了具有較高表面增強拉曼散射活性的襯底結構,可實現對多氯聯苯(PCB77)的有效富集與高敏感性響應。   多氯聯苯(PCBs)屬于一類持久性有機污染物,能在環境中長期殘留、長距離遷移,具有脂溶性和生物

    拉曼散射現象的發現與研究

    1928年C.V.拉曼實驗發現,當光穿過透明介質被分子散射的光發生頻率變化,這一現象稱為拉曼散射,同年稍后在蘇聯和法國也被觀察到。在透明介質的散射光譜中,頻率與入射光頻率υ0相同的成分稱為瑞利散射;頻率對稱分布在υ0兩側的譜線或譜帶υ0±υ1即為拉曼光譜,其中頻率較小的成分υ0-υ1又稱為斯托克斯線

    1928-年2-月:發現拉曼散射

    1921 年,印度物理學家拉曼(C.V. Raman)從英國搭船回國,在途中他思考著為什么海洋會是藍色的問題,而開始了這方面的研究,促成他于 1928 年 2 月發現了新的散射效應,就是現在所知的拉曼效應,在物理和化學方面都很重要。拉曼照片來源:Emilio Segré VisualArchives

    相干拉曼散射顯微術詳解I

    “一花一世界”,這句充滿禪意的話在微觀視野中得到完美詮釋。而構成世間萬千紛繁的原子由化學鍵聯合為分子,不同的分子往往具有特異性的化學鍵振動,成為它們的指紋特征。相干拉曼散射(Coherent Raman Scattering,CRS)顯微術便是通過探測目標分子的特征振動來提供成像所需的襯度, 同時基

    環境污染物快速分析的表面增強拉曼光譜技術!

    引言隨著社會與經濟的發展,環境污染越來越成為困繞著人類健康和制約社會繼續發展的嚴峻問題,多環芳烴類污染物,在環境中具有長期穩定性、可遷徙性以及生物富集性,能干擾生物內分泌系統,損壞生物的神經系統,潛在的致癌作用[1-3]。表面增強拉曼光譜(Surface enhanced Raman spect

    拉曼光譜的研究進展和應用

      拉曼光譜的研究進展和應用  摘要  本文簡單介紹了拉曼光譜的一些技術分類,比如表面增強拉曼光譜技術、尖端增強拉曼光譜技術、殼層隔絕納米粒子增強拉曼光譜技術、相干反斯托克斯拉曼光譜技術。另外,還簡單介紹了拉曼光譜的一些領域的應用,比如心血管疾病診斷、食物安全檢測、藥物分析、微/納米加工等。  1拉

    福州分子光譜會-拉曼光譜技術新進展、新技術薈萃

      分析測試百科網訊 2016年10月29日,在第十九屆全國分子光譜學學術會議暨2016年光譜年會召開期間,會務組組織了拉曼光譜、紅外光譜、原子光譜分會場,讓各位到會學者進行交流學習。在“拉曼光譜及相關光譜技術的研究進展”分會現場人頭攢動,來自多個領域的拉曼光譜專家及相關廠商介紹了拉曼光譜的新技術、

    什么是表面增強拉曼光譜

    表面增強拉曼光譜法即SERS。吸附在粗糙化的金屬表面(通常為Ag)的分子具有很強的拉曼散射現象,這種表面增強效應稱為表面增強拉曼散射。其譜圖能提供樣品分子結構、構象等信息,能提供樣品分子吸附部位和吸附取向隨外部變化的消息。譜圖峰型狹窄,故分辨率高、選擇性好,SERS譜具有指紋作用

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频