半導體量子芯片比特獲得高靈敏測量
記者10日從中國科學技術大學獲悉,該校郭光燦院士團隊郭國平、曹剛等人與本源量子計算有限公司合作,利用微波超導諧振腔實現了對半導體雙量子點的激發能譜測量。相關研究成果日前發表在國際應用物理知名期刊《應用物理評論》上。 半導體系統具有良好的可擴展可集成特性,被認為是最有可能實現通用量子計算的體系之一。近年來硅基半導體量子計算取得系列進展,量子比特性能得到大幅提升,單比特和兩比特邏輯門保真度均已達到容錯量子計算閾值,如何進一步擴展比特數量、提高比特讀取保真度成為該領域的重要議題。 電路量子電動力學以微波光子為媒介,不僅可以用來實現比特間長程耦合,還可以用于對比特的非破壞性、高靈敏探測,是量子比特擴展和讀出的一種重要方案。研究人員制備了鈮鈦氮微波諧振腔—半導體量子點復合器件,利用鈮鈦氮的高阻抗特性,大幅提高了微波諧振腔與量子比特的耦合強度,達到強耦合區間。進一步通過在器件上施加方波脈沖,驅動電子在量子點的不同能級間躍遷,并利用高......閱讀全文
半導體所HgTe半導體量子點研究取得新進展
近年來,拓撲絕緣體材料以其獨特的物性吸引了科學界廣泛的研究關注。這類材料內部是絕緣體,而在邊界或/和表面則顯示出金屬的特性。這種獨特的性質無法按照傳統的材料分類方法來區分。其能帶結構由Z2拓撲不變量來刻畫。目前人們注意力集中在拓撲絕緣體塊材的制備和輸運性質研究方面。相對而言,拓撲絕緣體納米結構的
我國在量子計算研究獲進展-實現三量子點半導體調控
近期,中國科學技術大學郭光燦院士領導的中科院量子信息重點實驗室在半導體量子計算芯片研究方面取得新進展。實驗室郭國平研究組創新性地引入第三個量子點作為控制參數,在保證新型雜化量子比特相干性的前提下,極大地增強了雜化量子比特的可控性。國際應用物理學頂級期刊《應用物理評論》日前發表了該成果。 開發與
量子點尺寸調控實現半導體SERS基底性能提升
表面增強拉曼技術(Surface-enhanced Raman Spectroscopy,SERS)是無損、高靈敏、高特異性光譜技術,在反應監測、生物醫學檢測、環境監測等學科中頗具應用價值。近年來,半導體SERS基底的性能調控備受關注。然而,半導體SERS增強效果普遍較弱,難以應用于散射截面較小的無
金屬魔法:用半導體量子點打造夢想材料
據最新一期《自然·通訊》雜志報道,包括日本RIKEN新興物質科學中心研究人員在內的團隊成功創造了一種由硫化鉛半導體膠體量子點組成的“超晶格”,研究人員在這種晶格中實現了類似金屬的導電性,導電性比目前的量子點顯示器高100萬倍,且不會影響量子限制效應。這一進步可能會徹底改變量子點技術,從而在電致發光設
全自動樣品組織研磨儀量子點半導體在新材料研磨的應用
量子點又稱為半導體發光納米晶,是一種粒徑介于1—10nm之間的納米顆粒,受激后可以發射熒光。由于不同尺寸的量子點,其電子和空穴被量子限域的程度不一樣,因此可在受到外來能量(光、電)的激發后發出不同顏色的光,覆蓋從藍光到紅外光的整個區域。? 近年來,盡管大眾對“量子點”概念還有些陌生,但它在顯示領域
半導體所等在量子點光子相干物理研究中取得新進展
未來量子信息應用最具挑戰性問題是單量子態的檢測和操縱,這是因為量子態很脆弱,一旦融入外在環境,其量子性質很容易被破壞。S. Haroche和D. Wineland通過微波腔囚禁單個原子、電勢阱俘獲帶電離子等實驗手段,在單個光子態的測量和操縱方面做出了奠基性的工作,獲得了2012年度
碳點和碳量子點的區別
一、含義不同:量子點一般是從鉛、鎘和硅的混合物中提取出來的,但這些量子點一般有毒,對環境也有很大的危害。所以科學家們尋求在一些良性的化合物中提取量子點。相對金屬量子點而言,碳量子點無毒害作用,對環境的危害很小,制備成本低廉。它的研究代表了發光納米粒子研究進入了一個新的階段。二、用途不同:碳點(CDs
量子點LED應用方案
應用背景量子點發光二極管(Quantum dot light-emitting diode,簡稱QLED)是一種以量子點為發光層的電致發光器件,其結構和發光原理與有機發光二極管相似。量子點(Quantum dots,簡稱QD)是一類納米尺寸的半導體材料,通常呈膠體狀態,常見的
量子點生物應用指南
量子點是尺寸在 1-100 納米的半導體材料(包括Ⅱ-Ⅵ族,Ⅲ-Ⅴ族,Ⅳ族等),具有明顯的量子效應。與傳統的有機熒光染料相比,具有靈敏度高,穩定性好,熒光壽命長等優勢。量子點的特殊的光學性質使得它在光化學、分子生物學、醫藥學等研究中有極大的應用前景。量子點最有前途的應用領域就是作為熒光探針應用于生物
量子點控制方法找到
據來自劍橋大學的消息,該校研究人員日前找到了能夠控制半導體量子點中原子核排列的方法,從而為開發量子存儲器提供了可行途徑。 量子點是由數千個原子組成的晶體,每一個原子都與被捕獲的電子發生磁相互作用。如果不干涉的話,這種擁有核自旋的電子相互作用,限制了電子作為量子比特(量子位)的作用。劍橋大學卡文
量子點是什么技術
量子點實際上是納米半導體。通過施加一定的電場或光的壓力,這些納米半導體材料,它們會發出特定頻率的光,這種半導體的頻率變化,通過調節納米半導體的大小可以控制它發出的光的顏色,由于納米半導體具有有限的電子和空穴(電子眼)的特點,這一特點在本質上是相似的原子或分子被稱為量子點。量子點是重要的低維半導體材料
基于近紅外稀土納米晶/量子點雙激發解碼實現精準探溫
近紅外熒光比率型溫度傳感具有較大的組織穿透深度、較低的背景熒光干擾及無創探測等優點,因而在生物醫學領域具有廣闊應用前景。為了避免熒光探測信號相互串擾,傳統的近紅外熒光比率型溫度探測模式采用兩個無交疊的熒光發射強度之比作為溫敏參數。然而,光在生物組織中的衰減系數具有波長依賴性,因而兩個無交疊的熒光
半導體所等在納米線量子點單光子發射研究中獲得新發現
半導體自組織InAs量子點因其具有“類原子”特性,是目前量子物理和量子信息器件研究最重要的固態量子結構之一。基于InAs量子點的高品質單光子的發射、讀取、操縱、存儲以及并行計算等是熱點研究方向。而InAs單量子點的可控制備(如精確定位、有序擴展、與光學諧振腔耦合等)是目前面臨的挑戰性問題。
碳量子點有哪些應用
碳量子點還是比較好的,石墨烯量子點在量子點的應用中比較有前途。具體有哪些應用主要看量子點的具體效應,針對不同的效應它的用途就不同。從大的方向來講,量子點的應用主要有太陽能電池、發光器件、光學生物標記等領域。合成方法同樣也有很多,比較常見的有水熱合成法、膠束合成法以及半導體微電子加工技術、外延生長模式
半導體量子點作為光催化二氧化碳還原催化劑
在自然界中,光合生物能夠在太陽光的照射下利用光合色素將二氧化碳(或硫化氫)和水轉化為有機物,并釋放出氧氣(或氫氣),該過程是生物界賴以生存的基礎,也是地球碳氧循環的重要媒介。受此啟發,利用可見光還原的方式將二氧化碳轉化為具有高附加值的化學品和/或太陽能燃料(如CO、HCOOH、CH3OH、CH4
半導體量子芯片開發獲重要進展
“量子芯片”是未來量子計算機的“大腦”。中國科學技術大學郭光燦院士領導的中科院量子信息重點實驗室郭國平研究組,在量子芯片開發領域的一項重要進展,首次在砷化鎵半導體量子芯片中成功實現了量子相干特性好、操控速度快、可控性強的電控新型編碼量子比特。該成果近日在國際權威雜志《物理評論快報》發表。 郭
院士出力,攻克量子點材料難關
中國科學技術大學獲悉,該校中國科學院微觀磁共振重點實驗室杜江峰院士、樊逢佳教授等人與其他科研人員合作,在量子點合成過程中引入晶格應力,調控量子點的能級結構,獲得了具有強發光方向性的量子點材料,此材料應用在量子點發光二極管(QLED)中有望大幅提升器件的發光效率。這一研究成果日前發表在《科學進展》雜志
JACS:“量子點”助力RNA干擾技術
15年前,科學家發現了一種阻礙基因表達路徑的方法——RNA干擾(簡稱RNAi)。這項榮膺2006年諾貝爾獎的發現承載著醫學科學的迫切希望,它可以通過沉默基因來阻礙特定蛋白制造,從而達到疾病治療的效果。不過到目前為止,RNA干擾技術很難在活體細胞中取得應用。 圖片說明:由不同尺寸的相同物質構成的
量子點:現狀、機遇和挑戰(一)
化學系教授彭笑剛“以新型量子點為基礎,通過與浙大材料系金一政副教授小組和納晶科技公司合作,我們已經看到了第一個帶有顛覆性意義的量子點應用。那就是性能優異的‘量子點LED’(QLED)。”深重的自然資源危機我認為,量子點是現代科學的重要前沿。為什么這么說?2002年,《美國科學院院刊》有一篇文章,做了
量子點:現狀、機遇和挑戰(三)
創業浪潮既然是功能材料,只是好看是不行的。美國年輕學子和中國的年輕學者有一點頗不一樣。如果他們認為一項技術有用,博士畢業后(甚至不等到畢業)就去開公司創業。這就是名校畢業生,他們去創業、給別人提供就業機會。中國高等教育在這個方面值得反思,如何教育學生不成為社會就業負擔,而是成為創業者?第一家有影響的
量子點材料:現狀、機遇和挑戰
量子點屬于一大類新材料——溶液納米晶中的一種。溶液納米晶具有晶體和溶液的雙重性質,量子點是其中馬上具有突破性工業應用的材料。 與其他納米晶材料不同,量子點是以半導體晶體為基礎的。尺寸在1~100納米之間,每一個粒子都是單晶。量子點的名字,來源于半導體納米晶的量子限域效應,或者量子尺寸效應。當半
量子點:現狀、機遇和挑戰(二)
從發端到熱潮量子點領域的發端,大約在70年代末。當時,西方國家的化學家受石油危機的影響,想尋找新一代能利用太陽能的光催化和光電轉換系統。借鑒半導體太陽能電池的原理,化學家們開始嘗試著在溶液中制備半導體小晶體,并研究它們的光電性質。有代表性的人物,包括美國的BARD和BRU、前蘇聯的Ekimov、德國
繽紛量子點:繪制絢麗納米世界
蒙吉·巴文迪(左)、路易斯·布魯斯(中)和阿列克謝·葉基莫夫(右)因“量子點的發現與合成”榮獲2023年諾貝爾化學獎 一旦物質的大小達到百萬分之一毫米級別,就會產生挑戰人類直覺的奇怪現象——量子效應。 假設一場魔法將我們生活中的一切縮小到納米尺寸,那我們將收獲五光十色的世界:小小的金耳環可能
量子點屏幕和led的區別
量子點屏幕和led在技術、畫質方面有區別。量子點電視和OLED電視區別——技術方面OLED,直譯為有機發光二極管,具有自發光特性,使用磷光色層構造產生不同顏色的光,而不是像液晶屏幕那樣需要背光源。至于量子點本質上仍是液晶屏幕,只是改進了背光顯示。相對LED背光來說,量子點技術能夠有效減少過多的藍光,
我國半導體量子芯片研究獲突破:實現三量子比特邏輯門
記者從中國科學技術大學獲悉,該校郭光燦院士團隊近期在半導體量子芯片研制方面再獲新進展,創新性地制備了半導體六量子點芯片,在國際上首次實現了半導體體系中的三量子比特邏輯門操控,為未來研制集成化半導體量子芯片邁出堅實一步。國際應用物理學權威期刊《物理評論應用》日前發表了該成果。 開發與現代半導體工
我國量子計算研究獲進展-實現三量子點高效調控
近期,中國科學技術大學郭光燦院士領導的中科院量子信息重點實驗室在半導體量子計算芯片研究方面取得新進展。實驗室郭國平研究組創新性地引入第三個量子點作為控制參數,在保證新型雜化量子比特相干性的前提下,極大地增強了雜化量子比特的可控性。國際應用物理學頂級期刊《應用物理評論》日前發表了該成果。 開發
半導體量子芯片比特獲得高靈敏測量
記者10日從中國科學技術大學獲悉,該校郭光燦院士團隊郭國平、曹剛等人與本源量子計算有限公司合作,利用微波超導諧振腔實現了對半導體雙量子點的激發能譜測量。相關研究成果日前發表在國際應用物理知名期刊《應用物理評論》上。 半導體系統具有良好的可擴展可集成特性,被認為是最有可能實現通用量子計算的體系之
劍橋團隊找到量子點控制方法,為量子存儲提供可行途徑
據來自劍橋大學的消息,該校研究人員日前找到了能夠控制半導體量子點中原子核排列的方法,從而為開發量子存儲器提供了可行途徑。 量子點是由數千個原子組成的晶體,每一個原子都與被捕獲的電子發生磁相互作用。如果不干涉的話,這種擁有核自旋的電子相互作用,限制了電子作為量子比特(量子位)的作用。劍橋大學卡文
量子點微芯片提高腫瘤療法效率
俄羅斯國立核能研究大學莫斯科工程物理學院與法國香檳—阿登大區南特大學和蘭斯大學的研究者合作,在量子點基礎上研發出一種微芯片,有助于發現高效激酶抑制劑(能夠降低活性的物質),這將有望使抗癌療法的效率提高許多倍。研究結果發表在《科學報告》上。 莫斯科工程物理學院納米工程國際實驗室主要學者、法國蘭斯
量子點技術的原理應用優點
量子點其實是一種納米級別的半導體,通過對這種納米半導體材料施加一定的電場或光壓,它們便會發出特定頻率的光,而發出的光的頻率會隨著這種半導體的尺寸的改變而變化,因而通過調節這種納米半導體的尺寸就可以控制其發出的光的顏色,由于這種納米半導體擁有限制電子和電子空穴的特性,這一特性類似于自然界中的原子或分子