病毒基因、人工轉入基因、轉座子等外源性基因隨機整合到宿主細胞基因組內,并利用宿主細胞進行轉錄時,常產生一些dsRNA。宿主細胞對這些dsRNA迅即產生反應,其胞質中的核酸內切酶Dicer將dsRNA切割成多個具有特定長度和結構的小片段RNA(大約21~23 bp),即siRNA。siRNA在細胞內RNA解旋酶的作用下解鏈成正義鏈和反義鏈,繼之由反義siRNA再與體內一些酶(包括內切酶、外切酶、解旋酶等)結合形成RNA誘導的沉默復合物(RNA-induced silencing complex,RISC)。RISC與外源性基因表達的mRNA的同源區進行特異性結合,RISC具有核酸酶的功能,在結合部位切割mRNA,切割位點即是與siRNA中反義鏈互補結合的兩端。被切割后的斷裂mRNA隨即降解,從而誘發宿主細胞針對這些mRNA的降解反應。siRNA不僅能引導RISC切割同源單鏈mRNA,而且可作為引物與靶RNA結合并在RNA聚合酶(R......閱讀全文
病毒基因、人工轉入基因、轉座子等外源性基因隨機整合到宿主細胞基因組內,并利用宿主細胞進行轉錄時,常產生一些dsRNA。宿主細胞對這些dsRNA迅即產生反應,其胞質中的核酸內切酶Dicer將dsRNA切割成多個具有特定長度和結構的小片段RNA(大約21~23 bp),即siRNA。siRNA在細胞內R
通過生化和遺傳學研究表明,RNA干擾包括起始階段和效應階段(inititation and effector steps)。在起始階段,加入的小分子RNA被切割為21-23核苷酸長的小分子干擾RNA片段(small interfering RNAs, siRNAs)。證據表明;一個稱為Dic
反義RNA的分類和作用機制:下表總結了原核細胞內天然存在的11種反義RNA。這些反義RNA按其作用機制可經分為三大類。調節水平 反義RNA 靶RNA 分類 功能 來源轉錄后水平?micF RNA ompF mRNA 1A OmpF合成 染色體oop RNA cⅡmRNA 1B 溶菌-溶源?噬菌體sa
日本東京大學官網近日宣布,東京大學和京都大學研究人員發現了核糖核酸干擾(RNAi)的分子機制。所謂核糖核酸干擾,就是單分子RNA分裂時出現的某種蛋白質合成受到抑制的現象。 由于借助RNAi可以關閉特定基因的表達,科學家一直期待RNAi現象在醫療領域得到應用。在先前研究中,科學家已經發現RNAi
10月31日,2014(第二屆)非編碼RNA學術研討會繼續在上海好望角大飯店(中科院上海學術活動中心)如火如荼地進行。 來自北京大學藥學院的教授楊振軍介紹了異核苷修飾的干擾RNA和核酸適配體作用機制研究。利用D-/L-異核苷修飾寡聚核苷酸,首先形成異核苷修飾的干擾RNA,改變修飾位點的局部構象
干擾素不能直接滅活病毒,而是通過誘導細胞合成抗病毒蛋白(AVP)發揮效應。干擾素首先作用于細胞的干擾素受體,經信號轉導等一系列生休過程,激活細胞基因表達多種抗病毒蛋白,實現對病毒的抑制作用。抗病毒蛋白主要包括2′-5′A合成酶和蛋白激酶等。前者降解病毒mRNA、后者抑制病毒多肽鏈的合成,使病毒復制終
RNAi是在研究秀麗新小桿線蟲(C. elegans)反義RNA(antisense RNA)的過程中發現的,由dsRNA介導的同源RNA降解過程。1995年,Guo等發現注射正義RNA(sense RNA)和反義RNA均能有效并特異性地抑制秀麗新小桿線蟲par-1基因的表達,該結果不能使用反義RN
1995年,康乃爾大學的Su Guo博士在試圖阻斷秀麗新小桿線蟲(C. elegans)中的par-1基因時,發現了一個意想不到的現象。她們本是利用反義RNA技術特異性地阻斷上述基因的表達,而同時在對照實驗中給線蟲注射正義RNA(sense RNA)以期觀察到基因表達的增強。但得到的結果
干擾蛋白質的合成意味著細胞存活所必需的酶不能被合成。以這種方式作用的抗生素包括福霉素(放線菌素)類、氨基糖苷類、四環素類和氯霉素。蛋白質的合成是在核糖體上進行的,其核糖體由由50S和30S兩個亞基組成。其中,氨基糖苷類和四環素類抗生素作用于30S亞基,而氯霉素、大環內酯類、林可霉素類等主要作用于50
1.高效性:Elbashir等在研究中發現分別為25 nmol/L與100 nmol/L的起始雙鏈RNA產生的結果是一樣的,只是高濃度起始的更有效些。將雙鏈RNA濃度降低到1.5 nmol/L時產生的基因沉默效果變化不大,只有當濃度降低到0.05 nmol/L時,沉默的效果才消失。Holen等也證實