[1]長的反義RNA并不一定比短的反義RNA更為有效;[2]在原核生物中針對SD序列及其附近區域的反義RNA可能更有效;[3]在真核生物中,對應于5'端非編碼區的反義RNA可能比針對編碼區的反義RNA更有效;[4]盡量避免在反義RNA分子中出現自我互補的二級結構;[5]設計的反義RNA分子中不應有AUG或開放讀框,否則該反義RNA亦會與核糖體結合而影響其與靶mRNA的配對結合;[6]進一步還可以將帶有ribozyme結構的RNA連在反義RNA的3'端尾上,當反義RNA與靶mRNA雜交后,即可利用其酶活性來降解靶mRNA。......閱讀全文
[1]長的反義RNA并不一定比短的反義RNA更為有效;[2]在原核生物中針對SD序列及其附近區域的反義RNA可能更有效;[3]在真核生物中,對應于5'端非編碼區的反義RNA可能比針對編碼區的反義RNA更有效;[4]盡量避免在反義RNA分子中出現自我互補的二級結構;[5]設計的反義RNA分子中
用反義RNA分子來調節基因表達時,經常會遇到的困難是反應模板的穩定性差。因此,人們正在探索如何改進反義基因的新方法,目前主要有:(1)優化反義RNA的結合。反義RNA鏈的長度對抑制基因的效果是重要的。雙螺旋形成過程中將釋放能量,RNA鏈越長,釋放的自由能越多。從這一意義來講,可以說長RNA作為反義R
隨著分子生物學和遺傳工程的發展,基因治療應運而生,反義技術是其中一種,它的基礎是根據核酸雜交原理設計針對特定靶序列的反義核酸,從而抑制特定基因的表達,包括反義RNA、反義DNA及核酶(Ribozyme),它們通過人工合成和生物合成獲得。反義DNA是指一段能與特定的DNA或RNA以堿基互補配對的方式結
[1]長的反義RNA并不一定比短的反義RNA更為有效;[2]在原核生物中針對SD序列及其附近區域的反義RNA可能更有效;[3]在真核生物中,對應于5'端非編碼區的反義RNA可能比針對編碼區的反義RNA更有效;[4]盡量避免在反義RNA分子中出現自我互補的二級結構;[5]設計的反義RNA分子中
最近由于RNA干擾(RNA interference,RNAi)的發現使反義領域的研究增多。這種自然發生的現象最早是在秀麗線蟲中發現的(1),是序列特異性地使轉錄后的基因沉默的有力機制。由于最近兩年在RNAi領域取得的進步,已經有許多這方面的綜述發表(2-4)。RNA干擾是由長的雙鏈 RNA
反義RNA是指與mRNA互補的RNA分子,也包括與其它RNA互補的RNA分子。由于核糖體不能翻譯雙鏈的RNA,所以反義RNA與mRNA特異性的互補結合, 即抑制了該mRNA的翻譯。通過反義RNA控制mRNA的翻譯是原核生物基因表達調控的一種方式,最早是在E.coli 的產腸桿菌素的Col E1質粒中
細胞中反義RNA的來源有兩種途徑:第一是反向轉錄的產物,在多數情況下, 反義RNA是特定靶基因互補鏈反向轉錄產物, 即產生mRNA和反義RNA的DNA是同一區段的互補鏈。第二種來源是不同基因產物,如OMPF基因是大腸桿菌的膜蛋白基因,與透性有關,其反義基因MICFZE則為另一基因。
在原核生物中反義RNA具有多種功能,例如調控質粒的復制及其接合轉移,抑制某些轉位因子的轉位,對某些噬菌體溶菌-溶源狀態的控制等。下文僅舉數例。調控細菌基因的表達反義RNA對編碼CAP的基因的調控作用已如前述。這里再介紹一下micF RNA對ompF基因的表達的調控。ompF蛋白質是大腸桿菌的外膜蛋白
反義RNA是指與mRNA互補的RNA分子,也包括與其它RNA互補的RNA分子。由于核糖體不能翻譯雙鏈的RNA,所以反義RNA與mRNA特異性的互補結合, 即抑制了該mRNA的翻譯。通過反義RNA控制mRNA的翻譯是原核生物基因表達調控的一種方式,最早是在E.coli 的產腸桿菌素的Col E1質粒中
細胞中反義RNA的來源有兩種途徑:第一是反向轉錄的產物,在多數情況下, 反義RNA是特定靶基因互補鏈反向轉錄產物, 即產生mRNA和反義RNA的DNA是同一區段的互補鏈。第二種來源是不同基因產物,如OMPF基因是大腸桿菌的膜蛋白基因,與透性有關,其反義基因MICFZE則為另一基因。