<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    磁共振的基本信息介紹

    磁共振指的是自旋磁共振(spin magnetic resonance)現象。其意義上較廣,包含核磁共振(nuclear magnetic resonance, NMR)、電子順磁共振(electron paramagnetic resonance, EPR)或稱電子自旋共振(electron spin resonance, ESR)。 此外,人們日常生活中常說的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振現象制成的一類用于醫學檢查的成像設備。......閱讀全文

    磁共振的基本信息介紹

      磁共振指的是自旋磁共振(spin magnetic resonance)現象。其意義上較廣,包含核磁共振(nuclear magnetic resonance, NMR)、電子順磁共振(electron paramagnetic resonance, EPR)或稱電子自旋共振(electron

    核磁共振的基本信息介紹

      核磁共振是磁矩不為零的原子核,在外磁場作用下自旋能級發生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核塞曼能級上的躍遷。  核磁共振應用:核磁共振成像(MRI)檢查已經成為一種常見的影像檢查方式,核磁共振成像作為一

    核磁共振儀的基本信息介紹

      基本原理:是將人體置于特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,并吸收能量。在停止射頻脈沖后,氫原子核按特定頻率發出射電信號,并將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。  核磁共振是一種物理現象,作為一種分析手段廣泛應用

    關于亞鐵磁共振的基本信息介紹

      亞鐵磁體是包含有兩個或更多個不等效的磁亞點陣的磁有序材料,亞鐵磁共振是亞鐵磁體在居里點以下的磁共振。在宏觀磁性上,通常亞鐵磁體與鐵磁體有許多相似的地方,亞鐵磁共振與鐵磁共振也有許多相似的地方。因此,習慣上常把一般亞鐵磁共振也稱為鐵磁共振。但在微觀結構上,含有多個磁亞點陣的亞鐵磁體與只有一個磁點陣

    生物分子核磁共振光譜的基本信息介紹

      1、蛋白質  利用核磁譜研究蛋白質,已經成為結構生物學領域的一項重要技術手段。X射線單晶衍射和核磁都可獲得高分辨率的蛋白質三維結構,不過核磁常局限于35kDa以下的小分子蛋白,盡管隨著技術的進步,稍大的蛋白質結構也可以被核磁解析出來。另外,獲得本質上非結構化(Intrinsically Unst

    磁共振的發展簡史介紹

      磁共振是在固體微觀量子理論和無線電微波電子學技術發展的基礎上被發現的。1945年首先在順磁性Mn鹽的水溶液中觀測到順磁共振,第二年,又分別用吸收和感應的方法發現了石蠟和水中質子的核磁共振;用波導諧振腔方法發現了Fe、Co和Ni薄片的鐵磁共振。1950年在室溫附近觀測到固體Cr2O3的反鐵磁共振。

    核磁共振現象介紹

    原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。μ=γP式中,P是角動量矩,γ是磁旋比,它是自旋核的磁矩和角動量矩之間的比值,因此是各種核的特征常數。當自旋核(spin nuclear)處于磁感應強度為B0的外磁場中時,除自旋外,還會繞B0運動,這種

    關于核磁共振的相關介紹

      NMR 因圖譜信號的純數字化、過度的重疊范圍過寬(由于相對分子質量太大)核信號弱等原因,在蛋白、多肽物質的分析中應用一直不多。隨著二維、三維以及四維NMR 的應用,分子生物學、計算機處理技術的發展,使NMR 逐漸成為此類物質分析的主要方法之一。  NMR 可用于確定氨基酸序列、定量混合物中的各組

    磁共振波譜成像的介紹

      核磁共振波譜成像是近年來一種新型的高科技影像學檢查方法,是80年代初才應用于臨床的醫學影像診斷新技術。它具有無電離輻射性(放射線)損害;無骨性偽影;能多方向(橫斷、冠狀、矢狀切面等)和多參數成像;高度的軟組織分辨能力;無需使用對比劑即可顯示血管結構等獨特的優點。

    關于鐵磁共振的基本介紹

      鐵磁體中原子磁矩間的交換作用使這些原子磁矩在每個磁疇中自發地平行排列。一般,在鐵磁共振情況下,外加恒定磁場已使鐵磁體飽和磁化,即參與鐵磁共振進動運動的是彼此平行的原子磁矩(飽和磁化強度Ms)。鐵磁共振的這一特點引起的主要效應是:鐵磁體的退磁場成為影響共振的一項重要因素,因此必須考慮共振樣品形狀的

    關于順磁共振的內容介紹

      具有未抵消的電子磁矩(自旋)的磁無序系統,在一定的恒定磁場和高頻磁場同時作用下產生的磁共振。若未抵消的電子磁矩來源于未滿充的內電子殼層(如鐵族原子的3d殼層、稀土族原子的4f殼層),則一般稱為(狹義的)順磁共振。若未抵消的電子磁矩來源于外層電子或共有化電子的未配對自旋[如半導體和金屬中的導電電子

    磁共振成像歷史發展介紹

      磁共振成像是一種較新的醫學成像技術,國際上從一九八二年才正式用于臨床。它采用靜磁場和射頻磁場使人體組織成像,在成像過程中,既不用電子離輻射、也不用造影劑就可獲得高對比度的清晰圖像。它能夠從人體分子內部反映出人體器官失常和早期病變。它在很多地方優于X線CT。雖然X-CT解決了人體影像重疊問題,但由

    核磁共振固體實驗的相關介紹

      固體NMR實驗需要0.2克左右的固體粉末狀樣品,或者是細小顆粒狀固體。  其他說明  特殊要求請在樣品登記上注明,否則按正常測試處理;由于樣品處理不當(殘存溶劑、固體微粒、濃度不適當、雜質較多)等,造成譜圖質量不高,若要求重新測試該樣品時,則按新的樣品受理。

    核磁共振法的主要應用介紹

    核磁共振應用:核磁共振成像(MRI)檢查已經成為一種常見的影像檢查方式,核磁共振成像作為一種新型的影像檢查技術,不會對人體健康有影響,但六類人群不適宜進行核磁共振檢查即:安裝心臟起搏器的人、有或疑有眼球內金屬異物的人、動脈瘤銀夾結扎術的人、體內物存留或金屬假體的人、有生命危險的危重病人、幽閉恐懼癥患

    關于磁共振的實驗方法介紹

      通常,當外加恒定磁場Be在0.1~1.0T(材料的內磁場BBe)時,各種與電子有關的磁共振頻率都在微波頻段,而核磁共振頻率則在射頻頻段。這是因為原子核質量與電子質量之比至少1836倍的緣故。雖然觀測這兩類磁共振分別應用微波技術和無線電射頻技術,但其實驗裝置的組成與測量原理卻是類似的。磁共振實驗裝

    關于核磁共振發現病變的介紹

      核磁共振成像是一種利用核磁共振原理的最新醫學影像新技術,對腦、甲狀腺、肝、膽、脾、腎、胰、腎上腺、子宮、卵巢、前列腺等實質器官以及心臟和大血管有絕佳的診斷功能。與其他輔助檢查手段相比,核磁共振具有成像參數多、掃描速度快、組織分辨率高和圖像更清晰等優點,可幫助醫生“看見”不易察覺的早期病變,已經成

    磁共振的基本原理介紹

      磁共振(回旋共振除外)其經典唯象描述是:原子、電子及核都具有角動量,其磁矩與相應的角動量之比稱為磁旋比γ。磁矩M 在磁場B中受到轉矩MBsinθ(θ為M與B間夾角)的作用。此轉矩使磁矩繞磁場作進動運動,進動的角頻率ω=γB,ωo稱為拉莫爾頻率。由于阻尼作用,這一進動運動會很快衰減掉,即M達到與B

    固態核磁共振光譜的相關介紹

      液體核磁樣品如果放在某些特定的物理環境下,是無法進行研究的,而其它原子級別的光譜技術對此也無能為力。但在固體中,像晶體,微晶粉末,膠質這樣的,偶極耦合和化學位移的磁各向異性將在核自旋系統占據主導,在這種情況下如果使用傳統的液態核磁技術,譜圖上的峰將大大增寬,不利于研究。  已經有一系列的高分辨率

    關于核磁共振譜的應用介紹

      核磁共振技術在有機合成中,不僅可對反應物或產物進行結構解析和構型確定,在研究合成反應中的電荷分布及其定位效應、探討反應機理等方面也有著廣泛應用。核磁共振波譜能夠精細地表征出各個氫核或碳核的電荷分布狀況,通過研究配合物中金屬離子與配體的相互作用,從微觀層次上闡明配合物的性質與結構的關系,對有機合成

    影響核磁共振效果的因素介紹

    (1)電負性(誘導效應)電負性對化學位移的影響可概述為:電負性大的原子(或基團)吸電子能力強,1H核附近的吸電子基團使質子峰向低場移(左移),給電子基團使質子峰向高場移(右移)。這是因為吸電子基團降低了氫核周圍的電子云密度,屏蔽效應也就隨之降低,所以質子的化學位移向低場移動。給電子基團增加了氫核周圍

    關于生物分子核磁共振光譜的介紹

      1、蛋白質  利用核磁譜研究蛋白質,已經成為結構生物學領域的一項重要技術手段。X射線單晶衍射和核磁都可獲得高分辨率的蛋白質三維結構,不過核磁常局限于35kDa以下的小分子蛋白,盡管隨著技術的進步,稍大的蛋白質結構也可以被核磁解析出來。另外,獲得本質上非結構化(Intrinsically Unst

    反鐵磁共振的基本內容介紹

      反鐵磁體是包含兩個晶體學上等效的磁亞點陣且磁矩互相抵消的序磁材料,反鐵磁共振是反鐵磁體在奈耳溫度以下的磁共振。它是由交換作用強耦合的兩個磁亞點陣中磁矩的復雜進動運動產生的共振現象。在反鐵磁共振中,有效恒定磁場包括反鐵磁體內的交換場BE和磁晶各向異性場BA。在不加外恒定磁場而只加適當高頻磁場時,可

    關于核磁共振發現腫瘤的基本介紹

      核磁共振對顱腦、脊髓等疾病是最有效的影像診斷方法,不僅可以早期發現腫瘤、腦梗塞、腦出血、腦膿腫、腦囊蟲癥及先天性腦血管畸形,還能確定腦積水的種類及原因等。而針對危害中國女性生命健康的第一大婦科疾患——乳腺癌,通過核磁共振精準篩查,可以幫助發現乳腺癌早期病灶;而針對“高血壓、高血脂、高血糖”等三高

    核磁共振波譜法的相關介紹

      核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或NMRS),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。  人們可以從核

    永磁磁共振和超導磁共振的區別

    超導磁共振中產生磁場的方式不同,利用高溫超導材料制成的線圈產生高場強穩定磁場,臨床上已3T、1.5T等已經很普遍了。永磁一般采用鐵磁材料充磁之后形成的磁場,場強較低,一般不超過0.5T。場強高,別的不說,信噪比號。但是價錢和維護費用高很多~

    良性肝腫瘤的磁共振成像(MRI)檢查介紹

      完成診斷價值與CT相仿但可獲得長期橫斷面冠狀面和矢狀面圖像;對良惡性肝內占位病變優秀特別與血管瘤的鑒別優于CT;且無需增強即可顯示肝靜脈和門靜脈的分支放射性核素肝掃描。  應用實踐:金m锝碘玫瑰紅m銦等國際進行肝掃描對肝癌分會診斷的陽性符合率為%一%但對于直徑小于cm的腫瘤不易在掃描圖上表現出來

    核磁共振波譜法的基本技術介紹

      共振頻率  當放置在磁場中時,核磁共振活性的原子核(比如1H和13C),以同位素的頻率特性吸收電磁輻射。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和9

    連續波核磁共振波譜儀的相關介紹

      如今使用的核磁共振儀有連續波(continal wave,CW)及脈沖傅里葉(PFT)變換兩種形式。連續波核磁共 振儀主要由磁鐵、射頻發射器、檢測器、放大器及記錄儀等組成(見圖1)。磁鐵用來產生磁 場,主要有三種:永久磁鐵,電磁鐵[磁感應強度可高達24000 Gs(2.4 T)],超導磁鐵[磁感

    核磁共振波譜儀的參數及應用介紹

       核磁共振波譜儀是對經光源激發后產生熒光的物質或經化學處理后產生熒光的物質成份分析,可應用于生物化學、生物醫學。    臺式核磁共振波譜儀儀器參數:    1、H共振頻率: 60MHz ;    2、磁極直徑:12cm;    3、均勻度:    2Hz(0.03ppm),可以觀察

    心臟磁共振檢查心肌炎的相關介紹

      心臟磁共振檢查是評價心臟結構和功能的無創性、無輻射性的檢查手段,結合釓對比劑延遲強化掃描能全面地評價心臟的結構形態、心室舒張或收縮功能、心肌灌注和心肌的活性。心肌炎癥的初始階段反應表現為心肌細胞的膜通透性增加,細胞內及細胞間質水腫,而磁共振檢查中T2加權像對組織水腫極為敏感,結果可見長T2信號現

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频