關于線粒體基因組的大小的介紹
已知的是哺乳動物的線粒體基因組最小,果蠅和蛙的稍大,酵母的更大,而植物的線粒體基因組最大。人、小鼠和牛的線粒體基因組全序列已經測定,都是16.5 kb左右。每個細胞里有成千上萬份線粒體基因組DNA拷貝。果蠅和蛙的細胞里有多少個線粒體以及每個線粒體有多少份DNA拷貝,還沒有準確的數字。估計線粒體DNA的總量只相當于核DNA的1%弱。釀酒酵母(S.cerevisiae)的線粒體基因組約長84 kb,每個細胞里有22個線粒體,每個線粒體有4個基因組。生長中的酵母細胞線粒體DNA占細胞總DNA量的比例可高達18%。......閱讀全文
關于線粒體肌病的運動療法介紹
運動訓練作為ME有希望的治療選擇,包括阻力和耐力訓練。 (1)阻力訓練理論基礎是基因漂移學說。當mtDNA發生突變時就會導致細胞內同時存在野生型和突變型mtDNA,即異質性。但mtDNA突變的比例必須超過一個閾值,才能發生病變,對肌肉特定mtDNA突變患者的兩項研究證實了這種學說,這些患者骨骼
線粒體基因組的植物細胞和哺乳動物相關介紹
植物細胞 植物細胞的線粒體基因組的大小差別很大,最小的為100kb左右,大部分由非編碼的DNA序列組成,且有許多短的同源序列,同源序列之間的DNA重組會產生較小的亞基因組環狀DNA,與完整的“主”基因組共存于細胞內,因此植物線粒體基因組的研究更為困難。 哺乳動物 哺乳動物的線粒體基因DNA
關于線粒體肌病的遺傳治療方法介紹
核轉移是將攜有突變mtDNA的卵母細胞的核DNA轉移到含正常mtDNA的去核卵母細胞中,體外受精后植入子宮內。由于存在倫理和安全性等方面的問題,這種方法還有待于進一步的研究證實。
關于線粒體肌病的細胞移植治療介紹
成肌細胞移植是近年來興起的一種治療方法。細胞生物學研究表明成肌細胞相互融合成肌小管而發育成成熟的肌纖維。如將患者肌細胞與正常肌細胞在體外融合,然后輸入到患者體內,一般選用多點肌肉注射的方式,患者體內就可能有更多的野生mtDNA。或許將來能應用于臨床治療。
關于線粒體糖尿病的疾病損害介紹
線粒體病最容易影響的組織是腦、骨骼肌及心肌。神經系統損害主要表現有:眼外肌麻痹、中青年人卒中、癲癇發作、肌陣攣、視神經病、肌病、神經性耳聾、共濟失調、癡呆、周圍神經病、肌張力障礙、腦脊液蛋白升高等。其它系統損害表現為:心臟傳導阻滯、心肌病、母系遺傳糖尿病、身材矮小、甲狀腺功能低下、視網膜色素變性
關于線粒體肌病的臨床表現介紹
1.MERRF綜合征 即肌陣攣癲癇發作、小腦共濟失調、乳酸血癥和RRF,少數有智能低下、癡呆,亦有神經聾、矮小、弓形足等畸形。腦電圖顯示為棘慢波綜合,肌活檢見RRF、異常線粒體和包涵體。CT和MRI可見小腦萎縮和大腦白質病變。基因檢測可見8344或8356核苷酸點突變。 2.KSS綜合征
關于線粒體糖尿病的分型介紹
根據受累及的神經系統部位,線粒體病分為腦病、肌病、腦肌病和其他中間類型。 神經科臨床多見的疾病有線粒體肌病,LHON,MELAS,CPEO,MERRF,KSS,Leigh病,NARP,Pearson綜合癥,Alpers病及Menkes病等。線粒體病的實驗室檢查異常包括:骨骼肌活檢中破碎紅纖維(
關于線粒體肌病的血清乳酸檢查介紹
線粒體疾病血清乳酸值的升高也是重要診斷篩選指標。安靜狀態乳酸值若大于1.8nm~2.0nm,即為異常。特別是運動后乳酸值升高更有意義。血清乳酸與丙酮酸的比值異常被認為是細胞內氧化還原代謝的指標。此比值小于20為正常,在呼吸鏈缺陷時升高。通常情況下腦脊液乳酸值低于血清值,病理狀態下可升高,僅見于M
關于線粒體肌病的電生理檢查介紹
肌電圖為常用首選檢查之一,臨床有肌無力、肌萎縮等肌病表現時肌電圖檢查尤其重要。多數為肌源性改變,少數病例也可見神經源改變或兩者兼有,偶見線粒體腦病患者肌電圖正常。一些以腦病為主要表現的患者,肌電圖亦可見到神經源或肌源性改變。此為肌電圖在線粒體疾病的特征性所見。各種誘發電位檢查,對各種腦病綜合征的
關于線粒體DNA的主要功能介紹
復制 mtDNA可自我復制,其復制也是以半保留方式進行的。用同位素標記證明,mtDNA復制的時間主要在細胞周期的S期和G2期。DNA先復制,隨后線粒體分裂。其復制仍受細胞核的控制,復制所需要的DNA聚合酶是由核DNA編碼,在細胞質核糖體上合成的。 遺傳 由于線粒體會通過卵細胞傳遞,相關疾病
關于線粒體DNA的簡介
線粒體DNA是線粒體中的遺傳物質,線粒體能為細胞產生能量(ATP),是在細胞線粒體內發現的脫氧核糖核酸特殊形態。線粒體是為細胞提供能量(ATP)的細胞器。一個線粒體中一般有多個DNA分子。 它們攜帶著自己的DNA——mtDNA,而這些基因的突變能引起線粒體疾病。雖然疾病癥狀是多變的,但大腦、肌
關于線粒體膜上的Bcl2的作用介紹
(1)Bcl-2能改變線粒體巰基的氧化還原狀態來控制其膜電位從而調控細胞凋亡。在細胞凋亡中,線粒體的巰基可能組成了胞內氧化還原電位的傳感器,Bcl-2可能是通過抑制谷胱甘肽(GSH)的外泄,降低胞內的氧化還原電位,來抑制細胞凋亡的; (2)Bcl-2能調節粒體膜對一些凋亡蛋白前體的通透性。Bc
關于線粒體糖尿病的合并癥介紹
線粒體糖尿病(MIDD)常合并有MELAS綜合征(Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes):線粒體性腦肌病,乳酸酸中毒,卒中樣發作綜合征,病者除有肌無力外,伴發肌陣攣癲癇、共濟失調、視神
關于線粒體腦肌病的基因治療介紹
基因治療策略包括降低突變型mtDNA/野生型mtDNA的比例、使用錯位表達及異質表達、輸入其他同源性基因以及利用限制性內切酶修復突變型mtDNA等。如用人胞質體(含正常線粒體無細胞核的細胞)對缺陷細胞(含缺陷mtRNA,呼吸鏈功能減退的細胞)進行基因補救治療,能成功地使缺陷細胞呼吸鏈功能恢復正常
相分離調控線粒體基因組空間秩序的模型
中國科學院廣州生物醫藥與健康研究院研究員劉興國團隊聯合清華大學、南方科技大學、北京大學、香港中文大學等科研人員,研究發現線粒體基因組與其結合蛋白,利用生物分子最基礎的自發聚集的相分離性質,調控線粒體類核的組裝以及轉錄的復雜過程,構建了首個相分離調控線粒體基因組結構與功能的模型。相關研究10月28日在
植物和哺乳動物線粒體基因組的差異
植物細胞植物細胞的線粒體基因組的大小差別很大,最小的為100kb左右,大部分由非編碼的DNA序列組成,且有許多短的同源序列,同源序列之間的DNA重組會產生較小的亞基因組環狀DNA,與完整的“主”基因組共存于細胞內,因此植物線粒體基因組的研究更為困難。哺乳動物哺乳動物的線粒體基因DNA沒有內含子,幾乎
關于線粒體疾病的病因分析
線粒體是細胞內提供能量的細胞器,人類mtDNA是長16569bp的環狀雙鏈分子,分輕鏈和重鏈,含37個基因,主要編碼呼吸鏈及與能量代謝有關的蛋白。mtDNA缺失或點突變使編碼線粒體氧化代謝過程必需的酶或載體發生障礙,糖原和脂肪酸等不能進入線粒體充分利用和產生足夠的ATP,導致能量代謝障礙和產生復
關于線粒體病的病因分析
線粒體是細胞內提供能量的細胞器,人類mtDNA是長16569bp的環狀雙鏈分子,分輕鏈和重鏈,含37個基因,主要編碼呼吸鏈及與能量代謝有關的蛋白。mtDNA缺失或點突變使編碼線粒體氧化代謝過程必需的酶或載體發生障礙,糖原和脂肪酸等不能進入線粒體充分利用和產生足夠的ATP,導致能量代謝障礙和產生復
喀斯特植物基因組大小的進化模式研究獲進展
基因組大小即物種單倍體的DNA含量,是一個物種基本的生物學特性,也是進化生物學領域的重要理論問題。物種基因組大小的進化包括適應性和非適應性等多種機制,但不同機制在基因組大小進化過程中的重要性卻一直存在爭議。 喀斯特地區是我國植物多樣性和特有性的熱點區域,迄今為止沒有開展過該地區植物基因組大
關于線粒體腦肌病的飲食療法介紹
對不同缺陷的ME患者應用不同的飲食療法: (1)丙酮酸脫氫酶缺失患者,給予生酮飲食(碳水化合物降低,脂肪含量升高),可使患者線粒體生物合成增加和異質性向野生型mtDNA轉變增加; (2)肉毒堿缺陷患者,應限制脂肪攝入 (3)丙酮酸羧化酶缺失患者,推薦高蛋白、高碳水化合物、低脂肪飲食。以上均
關于線粒體神經胃腸型腦肌病的預后介紹
MNGIE預后較差,平均死亡年齡為37歲(18歲-58歲)。患者多由于惡病質及胃腸道并發癥而死亡,因此提倡早診斷早治療,以延緩病程的進展。對于同時存在消化系統及神經系統癥狀者,無論是否存在典型的表現,都應懷疑這一疾病的可能,以免延誤診治。
關于線粒體肌病的L精氨酸治療介紹
作為氧化亞氮(NO)前體可誘發血管舒張,從而減少MELAS征患者的卒中樣發作。Kubota的研究表明MELAS卒中樣發作急性期給予L-精氨酸治療后癥狀改善,磁共振波譜分析顯示頂葉皮質乳酸峰降低、N-乙酰天門冬氨酸(NAA)峰正常,這些都提示L-精氨酸可改善線粒體能量狀態及細胞活力。還有研究表明L
PNAS:為什么線粒體保留自身基因組
這聽起來像科幻小說,認為人體內的每一個細胞都是由一個具有基因組的微小細胞器所占據,我們與其存在共 生關系。但是在現實中,真核生物的生命依賴于線粒體,它以三磷酸腺苷的形式給細胞提供能量(ATP)。幾 千年來,線粒體的基因組是在最小基因含量的選擇下進化的,但是研究者們一直無法確定“為什么有些線粒體基
提出相分離調控線粒體基因組空間秩序的模型
中國科學院廣州生物醫藥與健康研究院研究員劉興國團隊聯合清華大學、南方科技大學、北京大學、香港中文大學等科研人員,研究發現線粒體基因組與其結合蛋白,利用生物分子最基礎的自發聚集的相分離性質,調控線粒體類核的組裝以及轉錄的復雜過程,構建了首個相分離調控線粒體基因組結構與功能的模型。相關研究1
進化新方式?線粒體DNA會插入我們的基因組
劍橋大學和倫敦瑪麗女王大學的研究人員表明,線粒體DNA也會出現在一些癌癥DNA中,這表明它就像一塊創可貼,試圖修復我們遺傳密碼的損傷。這項研究成果于10月5日發表在《Nature》雜志上。 線粒體是細胞內的微小細胞器,它們像電池一樣,以ATP分子的形式為細胞提供能量。每個線粒體都有自己的DNA
關于葉綠體基因組的基本特點的介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
關于病毒基因組的基本介紹
病毒是最簡單的生物,完整的病毒顆粒包括外殼蛋白和內部的基因組DNA或RNA(有些病毒的外殼蛋白外面有一層由宿主細胞構成的被膜(envelope),被膜內含有病毒基因編碼的糖蛋白。病毒不能獨立地復制,必需進入宿主細胞中借助細胞內的一些酶類和細胞器才能使病毒得以復制。外殼蛋白(或被膜)的功能是識別和
關于葉綠體基因組--cpDNA的基本介紹
葉綠體基因組在很多方面與線粒體基因組的結構是相似的。葉綠體DNA(cpDNA)是雙鏈環狀,缺乏組蛋白和超螺旋。cpDNA中的GC含量與核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度離心來分離cpDNA。 每個葉綠體中cpDNA的拷貝數隨著物種的不同而不同。但都是多拷貝的。這些拷貝
質粒載體的載體大小的介紹
大的質粒(大于15kb)不會很好轉化而且DNA產量通常很低。在設計實驗時要考慮到加入插入片段的最終載體大小,盡量用更小的載體。 兼容性 當多于一個質粒載體必須同時存在于同一個細菌細胞中,這兩個質粒的復制子必須是兼容的。當他們不能穩定地共存時,則認為這兩個質粒是不兼容的。 選擇/檢測插入片段
關于線粒體膜電位變化的檢測
在凋亡研究的早期,從形態學觀測上線粒體沒有明顯的變化。隨著凋亡機制研究的深入,發現線粒體凋亡也是細胞凋亡的重要組成部分,發生很多生理生化變化。例如,在受到凋亡誘導后線粒體轉膜電位會發生變化,導致膜穿透性的改變。MitoSensorTM,一個陽離子性的染色劑,對此改變非常敏感,呈現出不同的熒光染色