<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 石墨烯中觀察到分數量子反常霍爾效應,奇異電子態可實現更強大量子計算

    分數量子霍爾效應通常在非常高的磁場下出現,但麻省理工學院的物理學家現在在簡單的石墨烯中觀察到了它。在5層石墨烯/六方氮化硼 (hBN) 莫爾超晶格中,電子(藍球)彼此強烈相互作用,并且表現得好像它們被分解成分數電荷一樣。圖片來源:桑普森·威爾科克斯。美國科學促進會優瑞科網站 美國麻省理工學院物理學家在5層石墨烯中觀察到了一種難以捉摸的分數電荷效應。這是結晶石墨烯中“分數量子反常霍爾效應”(“反常”指的是不存在磁場)的第一個證據。這將使一種新形式量子計算成為可能,這種類型的計算對微擾的抵抗力更強。最新一期《自然》雜志報道了這一研究結果。 在非常特殊的物質狀態下,電子可由一個整體分裂成幾個部分。這種被稱為“分數電荷”的現象十分少見。如果它能夠被聚集和控制,這種奇異的電子態可有助于建立彈性、容錯的量子計算機。到目前為止,物理學家已經觀察到數次分數量子霍爾效應,大多是在非常高的、精心維護的磁場下觀察到的。 去年8月,華盛頓大學的科......閱讀全文

    石墨烯中觀察到分數量子反常霍爾效應

    原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517780.shtm

    石墨烯與硅烯中的量子反常霍爾效應研究獲理論新突破

      近日,中國科學技術大學教授喬振華研究組與校內外同行合作在預言石墨烯和硅烯中的量子反常霍爾效應方面取得新突破,研究成果發表在3月14日和21日的《物理評論快報》上。   通過與校內外同行合作,喬振華提出一種新的實驗方案來實現量子反常霍爾效應:將石墨烯置于反鐵磁絕緣體材料鐵鉍酸的鐵磁面上,由于石墨

    科學家找到分數量子反常霍爾效應存在證據

    原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509583.shtm9月27日,《物理評論X》發表上海交通大學物理與天文學院副教授李聽昕、上海交通大學李政道研究所李政道學者劉曉雪團隊與美國田納西大學張陽團隊合作的最新科研成果,他們設計制備出新型轉角二碲

    高校合作在分數量子反常霍爾效應研究方面獲進展

    原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509571.shtm中國科學家在量子霍爾效應相關的研究上取得重要進展。凝聚態物理領域的量子霍爾效應的相關研究曾經三獲諾獎,一次是二維電子系統中量子霍爾效應的發現,另一次是分數量子霍爾效應的發現,這兩次發現

    物理所預言硅烯中的量子自旋霍爾效應

      最近,中科院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究員以及博士生劉鋮鋮、馮萬祥采用第一性原理,系統地研究了硅烯的晶體結構、穩定性、能帶拓撲和自旋軌道耦合打開的能隙,預言了在硅烯中可以實現量子自旋霍爾效應。 ?   近幾年來,拓撲絕緣體的研究在世界范圍內飛速發展,并成為凝聚態物理研

    首現弱磁場下扭曲雙層石墨烯奇異分數態

      美國哈佛大學與麻省理工學院的研究人員合作,首次在弱磁場下觀察到扭曲的雙層石墨烯的奇異分數態。這項研究發表在15日的《自然》雜志上,為未來的量子設備和應用鋪平了道路。  奇異的量子粒子和現象只有最極端的條件才會出現。換句話說,必須具備極低的溫度或極高的磁場。人們已經對室溫超導做了很多研究,但在弱磁

    弱磁場下扭曲雙層石墨烯奇異分數態首現

      美國哈佛大學與麻省理工學院的研究人員合作,首次在弱磁場下觀察到扭曲的雙層石墨烯的奇異分數態。這項研究發表在15日的《自然》雜志上,為未來的量子設備和應用鋪平了道路。  奇異的量子粒子和現象只有最極端的條件才會出現。換句話說,必須具備極低的溫度或極高的磁場。人們已經對室溫超導做了很多研究,但在弱磁

    天然雙層石墨烯內發現新奇量子效應

      由德國哥廷根大學領導的一個國際研究團隊在最新一期《自然》雜志上發表論文稱,他們在對天然雙層石墨烯開展的高精度研究中,發現了新奇的量子效應,并從理論上對其進行了解釋。這一系統制備簡單,為載荷子和不同相之間的相互作用提供了新見解,有助于理解所涉及的過程,促進量子計算機的發展。  2004年,兩位英國

    室溫非線性霍爾效應

      最新Nature Nanotechnology:室溫非線性霍爾效應  幾何相位和拓撲之間的緊密聯系使得基于霍爾效應的現象已成為現代材料和物理學的主要研究重點之一,這促使了人們對物質拓撲態的探索和許多相應實際應用的開發。在線性響應方式下,霍爾電導率需要通過磁化或外部磁場來打破時間反演對稱性。但最近

    光磁電效應和霍爾效應的異同

    光磁電效應和霍爾效應的異同雖然,光磁電效應與霍爾效應相似,但是它們是不同的效應。體現在三個方面:1)光磁電效應中在磁場作用下移動的是電子空穴對,而霍爾效應中移動的是自由電子。2)針對材料不同,一個是半導體材料,一個是導體材料。3)使用情形也不一樣,一個需要光照,一個不需要。利用光磁電效應可制成半導體

    光磁電效應和霍爾效應的異同

    雖然,光磁電效應與霍爾效應相似,但是它們是不同的效應。體現在三個方面,1)光磁電效應中在磁場作用下移動的是電子空穴對,而霍爾效應中移動的是自由電子。2)針對材料不同,一個是半導體材料,一個是導體材料。3)使用情形也不一樣,一個需要光照,一個不需要。利用光磁電效應可制成半導體紅外探測器。這類半導體材料

    什么是-電荷效應-濃縮效應-轉移電泳

    電泳過程必須在一種支持介質中進行。Tiselius等在1937年進行的自由界面電泳沒有固定支持介質,擴散和對流都比較強,影響分離效果。所以出現了固定支持介質的電泳,樣品在固定的介質中進行電泳過程,減少了擴散和對流等干擾作用。最初的支持介質是濾紙和醋酸纖維素膜,目前這些介質在實驗室已經應用得較少。在很

    研究者設計梯度表面能調控的復合型轉移媒介

    石墨烯等二維材料的載流子遷移率高、光-物質相互作用強、物性調控能力優,在高帶寬光電子器件領域具有重要的科學價值和廣闊的應用前景。 當前,發展與主流半導體硅工藝兼容的二維材料集成技術受到業內廣泛關注,其中首要的挑戰是將二維材料從其生長基底高效轉移到目標晶圓襯底上。然而,傳統的高分子輔助轉移技術通常

    霍爾效應測試儀簡介

      霍爾效應測試儀,是用于測量半導體材料的載流子濃度、遷移率、電阻率、霍爾系數等重要參數,而這些參數是了解半導體材料電學特性必須預先掌控的,因此是理解和研究半導體器件和半導體材料電學特性必備的工具。  霍爾效應測試儀介紹  該儀器為性能穩定、功能強大、性價比高的霍爾效應儀,在國內高校、研究所及半導體

    反常霍爾效應研究取得進展

      反常霍爾效應是最基本的電子輸運性質之一。雖然反常霍爾效應早在1881年就被Edwin Hall發現,但其微觀機制的建立卻經歷了一百余年的漫長歷程。本世紀初,牛謙等人的理論工作揭示了反常霍爾效應的內稟機制與材料能帶結構的貝里曲率有關,并得到了廣泛的實驗支持,反常霍爾效應也因此成為當今凝聚態物理研究

    超平整石墨烯晶圓轉移與集成光電器件

      石墨烯等二維材料的載流子遷移率高、光-物質相互作用強、物性調控能力優,在高帶寬光電子器件領域具有重要的科學價值和廣闊的應用前景。當前,發展與主流半導體硅工藝兼容的二維材料集成技術受到業內廣泛關注,其中首要的挑戰是將二維材料從其生長基底高效轉移到目標晶圓襯底上。然而,傳統的高分子輔助轉移技術通常會

    多層石墨烯壓電效應研究取得新進展

      中國科大合肥微尺度物質科學國家實驗室與物理學院喬振華教授與南京大學繆峰教授、王伯根教授合作,在多層石墨烯的壓電效應的研究方面取得重要進展,首次在實驗上觀察到石墨烯材料體系中正的壓電效應,并在理論上揭示了多層結構內層間相互作用對該效應的顯著貢獻。研究成果以“The positive piezoco

    山西大學發現量子霍爾態的界面電荷序調控新機制

    近日,山西大學光電研究所量子光學與光量子器件國家重點實驗室韓拯教授課題組實現了一種垂直電場調控的準二維界面局域電子態,進而通過庫倫相互作用對石墨烯自身能帶產生有效調控并在磁場下呈現新奇量子霍爾態。研究以“石墨烯中量子霍爾相的界面電荷耦合操控”(Quantum Hall phase in graphe

    中外合作發現氧化石墨烯薄膜離子篩選效應

    記者日前從中國科學技術大學獲悉,該校教授吳恒安與諾獎得主、英國曼徹斯特大學教授安德烈·海姆合作,發現氧化石墨烯薄膜具有精密快速篩選離子的性能。相關成果近期發表于《科學》雜志。   據介紹,石墨烯表面本來是排斥水的,但浸入到水中后,石墨烯薄膜里的毛細通道卻允許水的快速滲透。此次研究人員發

    中外合作發現氧化石墨烯薄膜離子篩選效應

      記者日前從中國科學技術大學獲悉,該校教授吳恒安與諾獎得主、英國曼徹斯特大學教授安德烈·海姆合作,發現氧化石墨烯薄膜具有精密快速篩選離子的性能。相關成果近期發表于《科學》雜志。   據介紹,石墨烯表面本來是排斥水的,但浸入到水中后,石墨烯薄膜里的毛細通道卻允許水的快速滲透。此次研究人員發現,水環

    中國科大等在二維材料拓撲態研究領域取得系列進展

      中國科學技術大學教授喬振華課題組與國內外同行合作,在二維體系拓撲量子態的理論研究方面取得系列進展。相關成果發表在《自然-納米技術》、《物理評論快報》和《物理學進展報告》上。  量子反常霍爾效應(即零磁場條件下量子霍爾效應)自石墨烯和拓撲絕緣體發現以來受到了凝聚態物理和材料科學領域的廣泛關注,并且

    石墨烯檢測方法大匯總,石墨烯快速檢測

      超全面石墨烯檢測方法大匯總,看完就是石墨烯檢測專家了!  2004年,康斯坦丁博士通過膠帶從石墨上分離出石墨烯這種“神器的材料”,它的出現在全世界范圍內引起了極大轟動……  石墨烯具有非同尋常的導電性能、極低的電阻率極低和極快的電子遷移的速度、超出鋼鐵數十倍的強度,極好的透光性……這些優異的性能

    氧化石墨烯和石墨烯性能的區別

    氧化石墨烯和石墨烯性能的區別采用改進的Hummers法制備了氧化石墨烯,將其采用水合肼還原獲得石墨烯,以氧化石墨烯和石墨烯為吸附劑,分別采用透射電鏡(TEM),傅里葉變換紅外光譜(FT-IR),拉曼光譜(RS)和X射線衍射光譜(XPS)對陰陽離子的不同吸附性能進行了分析表征.結果表明:兩吸附劑對羅丹

    通過石墨烯膜進行質子傳輸會產生巨大光電效應

      英國曼徹斯特大學Geim研究團隊---通過石墨烯膜進行質子傳輸會產生巨大光電效。石墨烯最近已被證明對熱質子,氫原子核是可透性的,于是人們對其在相關技術中用作質子傳導膜產生了極大興趣。然而,目前仍然不清楚光對質子滲透的影響情況。在該研究中,Lozada-Hidalgo 等人證明了,透過鉑納米顆粒修

    石墨烯拉曼光譜測試詳解-(四)表面增強拉曼效應

    當一些分子吸附在特定的物質(如金和銀)的表面時,分子的拉曼光譜信號強度會出現明顯地增幅,我們把這種拉曼散射增強的現象稱為表面增強拉曼散射(Surface-enhanced Raman scattering,簡稱SERS)效應。SERS技術克服了傳統拉曼信號微弱的缺點,可以使拉曼強度增大幾個數

    關于霍爾效應實驗儀的概述

       霍爾效應實驗儀可形象地觀察到霍爾電勢的產生、了解霍爾傳感器的道理。線圈的勵磁電流、霍爾傳感器的工作電流換向可用閘刀控制,也可選用繼電器控制。繼電器取代雙刀雙擲開關,大大提高了儀器的可靠性,減少故障。FB510 A 型霍爾效應實驗儀用亥姆霍茲線圈或螺線管產生穩恒磁場,線圈的勵磁電流、霍爾傳感器的

    霍爾效應實驗儀的性能特點

      1. 把勵磁電流、霍爾傳感器工作電流和霍爾電壓接口采用不同規格的插座和專用連接線,接線互換是插不到插座中的,完全消除了接線錯誤的可能性,防止損壞霍爾片和設備確保儀器安全。  2. 勵磁電流、霍爾傳感器的工作電流換向均用繼電器控制,取代了過去傳統的雙刀雙擲開關,最大的優點是大大提高了儀器的可靠性,

    石墨烯表征手段

    石墨烯的表征主要分為圖像類和圖譜類圖像類以光學顯微鏡透射電鏡TEM掃描電子顯微鏡、SEM和原子力顯微分析AFM為主而圖譜類則以拉曼光譜Raman紅外光譜IRX射線光電子能譜、XPS和紫外光譜UV為代表其中TEM、SEM、Raman、AFM和光學顯微鏡一般用來判斷石墨烯的層數而IRX、XPS和UV則可

    石墨烯怎么制作

    石墨烯制作方法:一、機械剝離法機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構。2004年,英國兩位科學使用透明膠帶對天然石墨進行層層剝離取得石墨烯的方法,也歸為機械剝離法。二、氧化還原法氧化還原法是通過使用硫酸、硝酸

    物理所可調拓撲能帶系統實現分數量子霍爾態研究獲進展

      作為量子霍爾效應家族中的一個重要成員,分數量子霍爾效應在近十年來的實驗和理論研究中都得到了十分廣泛的關注。近年來,隨著冷原子光晶格實驗技術的飛速發展,如何在格點模型中實現分數量子霍爾態成為了一個重要研究課題。分數量子霍爾效應是一類由粒子間關聯引起的、有分數填充數狀態的多粒子凝聚效應,是一種有“拓

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频