<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 微型二維材料調控平臺面世

    科技日報北京8月25日電 (記者劉霞)美國和日本科學家開發出全球首個基于微機電系統(MEMS)的二維(2D)材料原位轉角調控平臺。這個指甲大小的平臺名為“MEGA2D”,具備高度靈活性和精確度,可通過電壓精確控制2D材料的間距、旋轉等。相關論文發表于最新一期《自然》雜志。MEGA2D是一種可以扭轉2D材料的MEMS平臺。 圖片來源:《自然》雜志加州大學伯克利分校科學家認為,這項研究擴展了科學家操控低維量子材料的能力,也為研究新型2D和3D混合結構鋪平了道路,在凝聚態物理、量子技術等領域具有廣闊應用前景。2018年,《自然》雜志刊發的一篇論文指出,當兩層平行石墨烯之間的扭轉角度達到約1.1°的“魔角”時,就能“變身”為超導體。這一發現讓人們對新量子技術滿懷期待,“轉角電子學”應運而生。然而,要想透徹研究扭轉現象,必須制備數十到數百種不同配置的轉角石墨烯結構,這一過程費時費力。而且,對兩片單層原子進行連續動態轉角調控也很難......閱讀全文

    首個石墨烯超導量子干涉裝置面世

    瑞士科學家在最新一期《自然·納米技術》雜志上發表論文稱,他們利用石墨烯,制造出了首個超導量子干涉裝置,用于演示超導準粒子的干涉。最新研究有望促進量子技術的發展,也為超導研究開辟了新的可能性。 2004年石墨烯橫空出世,自此引發廣泛關注并獲得大力發展。石墨烯是目前已知最薄、強度最高、導電導熱性能最

    天然雙層石墨烯內發現新奇量子效應

      由德國哥廷根大學領導的一個國際研究團隊在最新一期《自然》雜志上發表論文稱,他們在對天然雙層石墨烯開展的高精度研究中,發現了新奇的量子效應,并從理論上對其進行了解釋。這一系統制備簡單,為載荷子和不同相之間的相互作用提供了新見解,有助于理解所涉及的過程,促進量子計算機的發展。  2004年,兩位英國

    石墨烯量子點領域研究獲系列進展

    原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519531.shtm石墨烯量子點、碳點等零維碳納米材料以其獨特的光學、電學性質,在近年來受到了廣泛關注,然而sp2-sp3混合雜化碳納米結構帶來的復雜體系使得該類材料的光致發光機制研究面臨挑戰。目前研究手

    石墨烯量子點領域研究獲系列進展

    石墨烯量子點、碳點等零維碳納米材料以其獨特的光學、電學性質,在近年來受到了廣泛關注,然而sp2-sp3混合雜化碳納米結構帶來的復雜體系使得該類材料的光致發光機制研究面臨挑戰。目前研究手段分為控制變量實驗歸納與機器學習分析兩種。然而,控制變量歸納方法難以得到描述構效關系的精確數學模型。另一方面,通過機

    新型類石墨烯二維晶體材料——鍺烯的研究獲進展

      近日,中國科學院武漢物理與數學研究所曹更玉研究組與中國科學院物理研究所高鴻鈞院士研究組合作,在新型類石墨烯二維晶體材料——鍺烯的制備研究方面取得新進展,相關研究結果與中科院物理所以共同第一作者單位合作發表在Advanced Materials(2014,26,4820)雜志上。  近年來石墨烯研

    引入石墨烯量子點,讓古墓壁畫更“長壽”

       價值連城的古代館藏壁畫正受到日益嚴重的損壞。而由于具有極好的兼容性,無機納米材料(如納米氫氧化鈣)作為一種前景良好的壁畫保護材料受到廣泛關注。但到目前為止,其合成方法仍然成本高,操作復雜,而且通常使用有機溶劑。  西北工業大學納米能源材料研究中心教授魏秉慶團隊近日在《先進功能材料》上發表論文稱

    新型二維材料開發-或將改良石墨烯性質

      石墨烯是一種前程遠大的材料,但缺乏帶隙限制了它的應用,尤其是在電子組件方面的應用。麻省理工學院與哈佛大學的研究人員開發出一種自組裝的新型二維材料,其具備和石墨烯相似的性質,同時還具備天然帶隙,可用于制造太陽能電池和晶體管。  該材料的化學式為Ni3(HITP)2,由鎳和一種名為HITP的有機化合

    歐洲研究團隊成功合成二維材料鍺烯-石墨烯家族又添表親

    二維材料鍺烯  艾克斯-馬賽大學等一個歐洲聯合研究團隊成功合成石墨烯的又一“表親”,即二維材料鍺烯(germanene)。該材料是由單層鍺原子構成,或具備表現出色的電學和光學性質,未來有可能被廣泛集成在各種電子設備。這項研究成果刊登在9月10日的《新物理學雜志》上。  這種二維材料最早于2009年被

    石墨烯二維材料摩擦演化取得突破性進展

       2004年首次被制備以來,以石墨烯為代表的二維材料因其獨特的電、磁、熱、力學等性質成為學術界研究的熱點。尤其是石墨烯的奇特摩擦行為引起人們對其內在物理機制的廣泛關注和討論。   金屬材料強度國家重點實驗室(西安交通大學)與美國麻省理工學院、清華大學、美國賓夕法尼亞大學等開展合作研究,在石墨烯二

    具二維亞鐵磁性石墨烯系統首次合成

    俄羅斯圣彼得堡國立大學的科學家與外國同事合作,在世界上首次在石墨烯中創造出二維亞鐵磁性,所獲得的石墨烯的磁性狀態為新的電子學方法奠定了基礎,有望開發出不使用硅的替代技術設備,提高能源效率和速度。 石墨烯是碳的二維改性形式,是當今所有可用的二維材料中最輕、最堅固的,而且具有高導電性。2018年,圣

    石墨烯與硅烯中的量子反常霍爾效應研究獲理論新突破

      近日,中國科學技術大學教授喬振華研究組與校內外同行合作在預言石墨烯和硅烯中的量子反常霍爾效應方面取得新突破,研究成果發表在3月14日和21日的《物理評論快報》上。   通過與校內外同行合作,喬振華提出一種新的實驗方案來實現量子反常霍爾效應:將石墨烯置于反鐵磁絕緣體材料鐵鉍酸的鐵磁面上,由于石墨

    石墨烯量子晶體管可用作DNA感測器

      在基因組測序技術領域,科學家在不斷追求速度更快、成本更低的方法和設備。據物理學家組織網10月30日報道,最近,美國伊利諾斯大學厄本那—香檳分校最近開發出了一種新奇的方法:把石墨烯納米帶(GNR)夾在兩層有納米孔(內徑約1納米)的固體膜中間,再讓DNA分子穿過這種“三明治”設備,以此來感知辨認所通

    基于石墨烯和量子點造太陽能電池

      俄羅斯大學和日本法政大學學者組成的一個國際小組開始啟動在石墨烯和量子點基礎上制造混合平面結構的工作。圖片來源于網絡  石墨烯擁有極高的導電能力,使它成為毫微電子學所需要的非常富有前景的材料。莫斯科物理工程學院納米生物工程實驗室學者伊戈爾·納比耶夫說:“我們將開展科研工作,讓人了解如何提高現有太陽

    石墨烯中觀察到分數量子反常霍爾效應

    原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517780.shtm

    二維共價有機框架/石墨烯復合薄膜材料制備獲進展

    研究析氫反應(HER)催化劑用于高效產氫有助于緩解能源危機、實現碳達峰和碳中和的戰略目標。Pt/C被認為是高效的HER催化劑,然而,由于資源稀缺、成本高以及可能引起重金屬污染,限制了其大規模應用。因此,開發可替代的非金屬催化劑成為該領域的研究熱點。二維有機框架薄膜材料是有機化合物通過共價鍵或配位鍵形

    石墨烯檢測方法大匯總,石墨烯快速檢測

      超全面石墨烯檢測方法大匯總,看完就是石墨烯檢測專家了!  2004年,康斯坦丁博士通過膠帶從石墨上分離出石墨烯這種“神器的材料”,它的出現在全世界范圍內引起了極大轟動……  石墨烯具有非同尋常的導電性能、極低的電阻率極低和極快的電子遷移的速度、超出鋼鐵數十倍的強度,極好的透光性……這些優異的性能

    氧化石墨烯和石墨烯性能的區別

    氧化石墨烯和石墨烯性能的區別采用改進的Hummers法制備了氧化石墨烯,將其采用水合肼還原獲得石墨烯,以氧化石墨烯和石墨烯為吸附劑,分別采用透射電鏡(TEM),傅里葉變換紅外光譜(FT-IR),拉曼光譜(RS)和X射線衍射光譜(XPS)對陰陽離子的不同吸附性能進行了分析表征.結果表明:兩吸附劑對羅丹

    研究揭示基于強磁場調控石墨烯量子點的光學性質

      石墨烯量子點(GQDs)是一種小尺寸的二維納米材料。近年來,因其穩定性、生物相容性、熒光可調性以及易被腎臟清除等特點,在癌癥診療一體化中具有極大的應用,在生物醫學領域引起了極大關注。現有應用于光熱治療的GQDs的光學吸收主要集中于近紅外一區。然而,皮膚和組織的吸收以及散射使得近紅外一區的激光穿透

    蘭州化物所石墨烯量子點的應用開發取得新進展

      中國科學院蘭州化學物理研究清潔能源化學與材料實驗室低維材料與化學儲能研究課題組在石墨烯量子點用于超級電容器應用方面取得新進展。研究工作相繼發表在近期出版的Adv. Funt.Mater. (2013, 23, 4111-4122)和Nanoscale( 2013, 5, 6053-6062)

    蘭州化物所石墨烯量子點的應用開發取得新進展

      中國科學院蘭州化學物理研究清潔能源化學與材料實驗室低維材料與化學儲能研究課題組在石墨烯量子點用于超級電容器應用方面取得新進展。研究工作相繼發表在近期出版的Adv. Funt.Mater.和Nanoscale。   石墨烯量子點(Graphene quantum dot,GQDs)指尺寸

    中國科大在石墨烯分子條帶中實現自旋量子通道轉換

      近日,中國科學技術大學合肥微尺度物質科學國家實驗室崔萍與曾長淦研究組通過理論與實驗互動性合作,證明在鋸齒型石墨烯分子條帶間引入碳四元環,可以有效地打破邊緣自旋量子通道的簡并度,并以100%的可靠率翻轉邊緣態的自旋取向,以電荷摻雜的形式選擇與控制所需要的單一自旋通道,從而多方位地展示了未來自旋電子

    氮摻雜石墨烯量子點在雙光子熒光成像研究取得進展

      雙光子熒光成像技術具有近紅外激發、避免光毒作用和光漂白、自發熒光干擾弱及較深的組織穿透深度等優點,在生物醫藥領域研究中受到極大關注。開發具有高雙光子吸收截面、生物相溶性好的材料作為雙光子熒光探針,是活細胞和深層組織成像研究領域的關鍵和熱點。   國家納米科學中心宮建茹研究組以氧化石墨烯為前驅體

    二維共價有機框架/石墨烯復合薄膜材料制備研究獲進展

      研究析氫反應(HER)催化劑用于高效產氫有助于緩解能源危機、實現碳達峰和碳中和的戰略目標。Pt/C被認為是高效的HER催化劑,然而,由于資源稀缺、成本高以及可能引起重金屬污染,限制了其大規模應用。因此,開發可替代的非金屬催化劑成為該領域的研究熱點。二維有機框架薄膜材料是有機化合物通過共價鍵或配位

    研究者設計梯度表面能調控的復合型轉移媒介

    石墨烯等二維材料的載流子遷移率高、光-物質相互作用強、物性調控能力優,在高帶寬光電子器件領域具有重要的科學價值和廣闊的應用前景。 當前,發展與主流半導體硅工藝兼容的二維材料集成技術受到業內廣泛關注,其中首要的挑戰是將二維材料從其生長基底高效轉移到目標晶圓襯底上。然而,傳統的高分子輔助轉移技術通常

    石墨烯怎么制作

    石墨烯制作方法:一、機械剝離法機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構。2004年,英國兩位科學使用透明膠帶對天然石墨進行層層剝離取得石墨烯的方法,也歸為機械剝離法。二、氧化還原法氧化還原法是通過使用硫酸、硝酸

    石墨烯表征手段

    石墨烯的表征主要分為圖像類和圖譜類圖像類以光學顯微鏡透射電鏡TEM掃描電子顯微鏡、SEM和原子力顯微分析AFM為主而圖譜類則以拉曼光譜Raman紅外光譜IRX射線光電子能譜、XPS和紫外光譜UV為代表其中TEM、SEM、Raman、AFM和光學顯微鏡一般用來判斷石墨烯的層數而IRX、XPS和UV則可

    北京石墨烯研究院石墨烯晶元、烯薄膜設備采購公告

      國信招標集團股份有限公司受北京石墨烯研究院委托,根據《中華人民共和國政府采購法》等有關規定,現對北京石墨烯研究院2018年石墨烯晶元批量制備設備和高質量石墨烯薄膜批量制備設備采購項目進行公開招標,歡迎合格的供應商前來投標。  項目名稱:北京石墨烯研究院2018年石墨烯晶元批量制備設備和高質量石墨

    高遷移率氮摻雜石墨烯量子輸運研究取得重要進展!

      石墨烯材料因其特殊的能帶結構、超高的遷移率和新奇的輸運特性,成為探索新物性、研制新型量子電子器件的理想體系。其中,對于石墨烯摻雜體系輸運特性的研究有助于理解摻雜石墨烯中的載流子輸運特性和散射機制,在石墨烯材料和電子器件性能優化方面具有重要指導意義。  近日,北京大學信息科學技術學院、固態量子器件

    北京大學利用石墨烯量子點實現光控界面摻雜

      低維納米材料由于在發光和電子輸運等方面有著豐富的物理特性,得到了廣泛關注。日前,北京大學方哲宇、朱星課題組利用石墨烯量子點(GQDs)等離激元實現了對單層MoS2的高效電荷摻雜以及發光光譜的動態調控,相關成果近期發表于《先進材料》。  單層danS2是一種直接帶隙半導體材料,具有較高的光致熒光發

    石墨烯量子點磁性復合納米粒子分散固相微萃取

    石墨烯量子點磁性復合納米粒子分散固相微萃取-毛細管電泳法測定肉桂酸及其衍生物?肉桂酸及其衍生物是一種重要的香料, 廣泛存在于多種中藥材中, 是健胃、袪風、抗糖尿病的有效成分[1], 同時具有抗氧化性、抗微生物活性、抗癌性等重要的臨床應用價值, 已被廣泛應用于醫藥品和食品添加劑中[2,?3]。由于醫藥

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频