關于基因調控的內容介紹
表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在三個水平上,即 ①DNA水平上的調控、轉錄控制和翻譯控制; ②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的; ③多細胞生物的基因調控是細胞分化、形態發生和個體發育的基礎,這類調控一般是長期的,而且往往是不可逆的。基因調控的研究有廣泛的生物學意義,是發生遺傳學和分子遺傳學的重要研究領域。 通過基因調控,微生物可以避免過多地合成氨基酸、核苷酸之類物質。如果使它們的調節基因發生突變,就可以得到大量合成這些物質的菌種,把這些菌種用在發酵工業上,使產量大幅度增長。在遺傳工程的研究中應用基因調控的原理可使外源基因表達(見重組DNA技術),所以基因調控的理論探討還具有生產實踐意義。......閱讀全文
什么是基因表達調控?基因表達調控有什么意義
意義:1.適應環境、維持生長和增殖:生物體賴以生存的外環境是在不斷變化的,為了生存,所有活細胞都必須對外環境變化作出適當反應,調節代謝,以適應環境變化。生物體適應環境、調節代謝的能力與蛋白質分子的生物學功能有關。而蛋白質的水平又受基因表達的調控。2.維持個體發育與分化:多細胞生物調節基因的表達除為適
基因調控的介紹
基因表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在三個水平上,即①DNA水平上的調控、轉錄控制和翻譯控制;②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的;③多細胞生物的基因調控是細胞分化、形態發生和個體發育的基礎,這類調控一
基因調控的簡史
1900年F.迪納特發現在含有乳糖和半乳糖的培養液中培養的酵母菌細胞中有分解半乳糖的酶,但是在葡萄糖的培養液中培養的酵母菌細胞中沒有相應的酶。1930年H.卡爾斯特倫在關于細菌的研究中也發現類似的現象,并把生物細胞中的酶區分為組成酶和適應酶(亦稱誘導酶)兩類,前者是在任何情況下都存在的酶,后者是
基因表達的調控
轉錄調控可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白質結合位點,具有調
電流能調控細菌基因
據《新科學家》雜志網站17日報道,美國研究人員利用細胞內隨處可見的氧化還原分子,成功用電流開啟和關閉細菌基因,為研制出可接入電子裝置的活體組件鋪平了道路。 在實驗室中,馬里蘭大學合成生物學家威廉姆·本特雷帶領其團隊將正電極浸入含大腸桿菌的溶液后,釋放出的正電荷會引起細菌內一些氧化還原分子氧化,
電流能調控細菌基因
據《新科學家》雜志網站17日報道,美國研究人員利用細胞內隨處可見的氧化還原分子,成功用電流開啟和關閉細菌基因,為研制出可接入電子裝置的活體組件鋪平了道路。 在實驗室中,馬里蘭大學合成生物學家威廉姆·本特雷帶領其團隊將正電極浸入含大腸桿菌的溶液后,釋放出的正電荷會引起細菌內一些氧化還原分子氧化,
基因調控的研究方法
篩選突變型 這是在原核生物中廣泛應用的方法,例如在乳糖操縱子的研究中篩選失去了基因調控能力的組成型,包括調節基因發生突變和操縱基因發生突變的突變型,以及篩選即使有乳糖或其他誘導物存在的情況下仍然不能合成β-半乳糖苷酶的超阻遏型等等。 激素誘導 在高等的真核生物中,除了離體培養的體細胞以
什么是基因表達調控
意義:1.適應環境、維持生長和增殖:生物體賴以生存的外環境是在不斷變化的,為了生存,所有活細胞都必須對外環境變化作出適當反應,調節代謝,以適應環境變化。生物體適應環境、調節代謝的能力與蛋白質分子的生物學功能有關。而蛋白質的水平又受基因表達的調控。2.維持個體發育與分化:多細胞生物調節基因的表達除為適
基因轉錄調控的途徑
可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。
基因轉錄后調控方式
真核生物的RNA被翻譯之前需要通過核孔輸出,因此核輸出對基因表達有著顯著影響。所有進出細胞核的mRNA的運輸都是通過核孔進行的,受到各種輸入蛋白和輸出蛋白的控制。攜帶遺傳密碼的mRNA需要存活足夠長的時間才能被翻譯,因為mRNA在翻譯之前必須經過很長距離的運輸。在典型的細胞中,RNA分子僅在特異性保
基因表達調控主要表現
基因表達調控主要表現在以下幾個方面:①轉錄水平上的調控;②mRNA加工、成熟水平上的調控;③翻譯水平上的調控;
基因表達調控的概念
基因表達調控是生物體內基因表達的調節控制,使細胞中基因表達的過程在時間、空間上處于有序狀態,并對環境條件的變化作出反應的復雜過程。基因表達的調控可在多個層次上進行,包括基因水平、轉錄水平、轉錄后水平、翻譯水平和翻譯后水平的調控。基因表達調控是生物體內細胞分化、形態發生和個體發育的分子基礎。
基因表達調控主要表現
基因表達調控主要表現在以下幾個方面:①轉錄水平上的調控;②mRNA加工、成熟水平上的調控;③翻譯水平上的調控;
什么是基因表達調控
分為轉錄水平上的基因表達調控和翻譯水平上的基因表達調控。1.轉錄水平的調控:包括DNA轉錄成RNA時的是否轉錄及轉錄頻率的調控,DNA的序列決定了DNA的空間構型,DNA的空間構型決定了轉錄因子是否可以順利的結合到DNA的調控序列上,比如結合到TATA等序列上。2.翻譯水平的調控:翻譯水平的調控又可
重疊基因的調控序列
①在5′端轉錄起始點上游約20~30個核苷酸的地方,有TATA框(TATA box)。TATA框是一個短的核苷酸序列,其堿基順序為TATAATAAT。TATA框是啟動子中的一個順序,它是RNA聚合酶的重要的接觸點,它能夠使酶準確地識別轉錄的起始點并開始轉錄。當TATA框中的堿基順序有所改變時,mRN
如何證明基因需要轉錄調控元件調控表達
如何證明基因需要轉錄調控元件調控表達如果此轉錄因子能夠激活靶啟動子,則熒光素酶基因就會表達,從而對基因的表達起抑制或增強的作用,通過檢測熒光的強度可以測定熒光素酶的活性:(1)構建一個將靶啟動子的特定片段插入到熒光素酶表達序列前方的報告基因質粒,熒光素酶與底物反應,如pGL3-basic等。(3)
eLife:lncRNA調控癌癥關鍵基因
Salk研究所的科學家們發現,一種長非編碼RNA(lncRNA)是癌癥發展過程中的一個關鍵基因開關。這項研究于四月二十九日發表在eLife雜志上,為相關癌癥的治療提供了一條新的途徑。 研究人員將這種lncRNA命名為PACER(p50-associated COX-2 extragenic
腎臟中基因可調控血壓
最近辛辛那提大學(UC)研究人員通過在小鼠模型中,實驗發現大量存在于腎臟中的基因可能實際上在調控血壓和高血壓中發揮作用。 該基因——腎雄激素調節蛋白(KAP)只在腎近曲小管中大量存在,并由雄激素如睪酮刺激。 雖然KAP在腎臟中的功能仍然未知,但科學家一直試圖調查該基因的作用,現在研究人員通過
關于基因調控的基本介紹
生物體內控制基因表達的機制。基因表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在3個水平上,即: ①DNA修飾水平、RNA轉錄的調控、和mRNA翻譯過程的控制; ②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的; ③多細胞
關于基因調控的內容介紹
表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在三個水平上,即 ①DNA水平上的調控、轉錄控制和翻譯控制; ②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的; ③多細胞生物的基因調控是細胞分化、形態發生和個體發育的基礎,這
關于基因調控的簡史介紹
1900年F.迪納特發現在含有乳糖和半乳糖的培養液中培養的酵母菌細胞中有分解半乳糖的酶,但是在葡萄糖的培養液中培養的酵母菌細胞中沒有相應的酶。1930年H.卡爾斯特倫在關于細菌的研究中也發現類似的現象,并把生物細胞中的酶區分為組成酶和適應酶(亦稱誘導酶)兩類,前者是在任何情況下都存在的酶,后者是
精子發生的基因調控
精子發生期間染色質濃縮,使 DNA不能夠轉錄,這種情況在精子完全形成之前完成。各種動物在精子形成中轉錄停止的時刻不完全相同。例如在果蠅,RNA合成在初級精母細胞期間停止,而在小鼠,在成熟分裂后不久的精子細胞中還在進行,要在細胞核開始伸長時才完全停止。
基因調控的實用意義
細菌通過基因調控可以避免合成過量的氨基酸、核苷酸等物質。人們要利用細菌來生產這些物質,就必須使它們喪失有關的基因調控作用。在一般的野生型細菌中,阻遏蛋白和氨基酸等代謝最終產物結合后便作用于操縱基因而使轉錄停止。有兩類突變型可以使細菌處于消阻遏狀態而合成過量的氨基酸等物質。一類是操縱基因突變型,
基因調控的實用意義
細菌通過基因調控可以避免合成過量的氨基酸、核苷酸等物質。人們要利用細菌來生產這些物質,就必須使它們喪失有關的基因調控作用。在一般的野生型細菌中,阻遏蛋白和氨基酸等代謝最終產物結合后便作用于操縱基因而使轉錄停止。有兩類突變型可以使細菌處于消阻遏狀態而合成過量的氨基酸等物質。一類是操縱基因突變型,由于操
基因表達調控定義是什么
基因表達調控的意義一方面是使生物體適應環境的不斷變化,維持其生存的需要。從低等生物到人體各種生物在處于環境變化,如營養、溫度、滲透壓改變時,能夠對環境信號作出反應,改變各種自身基因表達速率,調整體內參與相應功能的蛋白質的種類、數量,改變代謝狀況/-以適應環境需要。另一方面是保證多細胞生物進行正常地分
基因表達調控的主要表現
基因表達調控主要表現在以下幾個方面:①轉錄水平上的調控;②mRNA加工、成熟水平上的調控;③翻譯水平上的調控;
基因翻譯后調控的過程
翻譯后修飾(PTM)是對蛋白質的共價修飾。像RNA剪接一樣,它們有助于使蛋白質組更加豐富多樣。這些修飾通常由酶催化。此外,諸如氨基酸側鏈殘基的共價添加這樣的修飾過程通常可以被其它酶逆轉。但蛋白水解酶對蛋白質骨架的水解切割是不可逆轉的 。PTM在細胞中發揮著許多重要作用。例如,磷酸化主要涉及激活和失活
基因表達的調控模式介紹
轉錄調控可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白質結合位點,具有調
設計基因調控回路延緩衰老
人類的壽命與個體細胞老化有關。3年前,美國加州大學圣地亞哥分校的一組研究人員破譯了衰老過程背后的基本機制。在確定了細胞衰老過程中遵循的兩個不同方向后,研究人員通過基因操作這些過程來延長細胞的壽命。據發表在最新一期《科學》雜志上的論文,他們現在利用合成生物學擴展了這項研究,設計了一種解決方案,可防止細
基因翻譯的調控辦法
任何體內的生物反應都必須在調控的作用下,才有意義。翻譯的調控是十分精密復雜的。在原核生物里翻譯調控的基本單位不是單個的mRNA而是mRNA中的單個閱讀框。以ATP合成酶為例,在原核生物里,該酶包含A、B、C、D、E、F、G、H等多個亞基,其基因拷貝均為一份,在轉錄時轉錄到同一個mRNA上。而實際每個