<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    自然子刊綜覽

    《自然—納米技術》 新型藥用納米粒子結構可分解排出體外 將DNA鏈和納米粒子當作構件,組裝成一種可以增強攝取小鼠體內腫瘤的納米結構,并在之后發生分解,改善體內清潔度,最終降低潛在毒性。發表在《自然—納米技術》上的這項研究結果為抗癌藥物投遞的安全、可控提供了一種新策略。 為了改進投遞效果,納米粒子的體積必須足夠大到能夠吸收并困住腫瘤。但是,一旦納米粒子發揮治療效果后,會殘留在體內很長時間,因為體積太大而無法被體內系統自行清除,從而可能產生慢性中毒。 Warren Chan等人設計出一種納米粒子結構,其結構由一個帶有DNA鏈的核心納米粒子與多個小納米粒子層相連而成,體積大小剛好能夠吸收腫瘤。研究人員發現該結構能夠作為成像試劑和抗癌藥物的載體。他們注意到與核心納米粒子和未經過組裝的納米混合結構相比,這種納米結構在小鼠體內能夠在腫瘤中產生的累積效果更好。重要的是,在后續的小鼠尿液分析中檢測到這種納米結構的......閱讀全文

    聚合酞菁鐵/多壁碳納米管復合材料的制備及氧還原催化

    李志盼, 彭迎祥, 楊士鋒, 張搖 瑞, 李搖 凱, 左搖 霞(首都師范大學化學系, 北京 100048)摘要搖 采用高效、 便捷的微波合成法制備了 4 種不同結構的聚合酞菁鐵/ 多壁碳納米管(Poly鄄FePc/MWCNTs)復合材料并進行了表征. 結果表明, 聚合酞菁鐵均勻地包裹在多壁碳納米管上

    《德國應化》:冷凍電鏡對“原生態”微凝膠納米結構表征

      背景介紹  水凝膠微球,也稱為微凝膠,是一種可以被水溶脹的納米材料,是由交聯的親水或兩親性聚合物組成。與固體微球相比,這種微球有良好的生物相容性,pH值和溫度響應性的特點,而且柔軟性和穩定性出色,在高性能催化、生物分子、給藥系統和組織工程學等領域有潛在應用。  研究者通過設計不同的納米復合結構,

    2014年化學領域重要成果回顧

       2014已經翻過,來自世界各地的化學工作者們在過去的一年中做出了哪些精彩的發現?美國化學會主辦的化學化工領域著名新聞媒體《化學化工新聞》從年內諸多報道中精選出十項重要的科研成果,與我們一同分享化學學科各個領域的重要進展。1.元素周期表:氧化態的新紀錄在銥的化合物中實現   氧化態表示化合物中某

    拉曼光譜學——分子結構研究的方法

      拉曼光譜是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。現在,拉曼光譜的應用范圍遍及化學、物理學、生物學和醫學等各個領域,對于純定性分析、高度定量分

    固體所在構筑異質復雜一維納米結構方法上取得進展

      與單一材料的一維納米結構相比,由異質材料組成的復雜形貌一維納米結構,具有更多的功能與更好的性能。這種異質復雜一維納米結構在各種納米器件與多功能復雜系統中具有廣泛的應用前景。此前,人們根據高純鋁在陽極氧化過程中所形成孔的直徑與陽極氧化電壓成正比的關系,采用在陽極氧化過程中降低電壓、

    十二苯取代并四苯

      化學家一直在突破極限。他們用各種技術手段不斷合成新的分子,探索各種分子結構及其性質。一些新分子可以帶來直接的應用,而另外一些則揭示了獨特的性質。  2019 年,美國化學會旗下的 C&EN 像往年一樣,邀請讀者投票,從今年新合成的分子中評選出“年度分子”,反芳香性納米籠以最高票數當選。除

    孫世剛教授:重視基礎理論的研究才最有生命力

    ——紀念我國光譜事業30年,第十五屆全國分子光譜學學術會議專家采訪報道系列         在這個豐收的金秋季節,我國的光譜學界也迎來了屬于自己的收獲――第十五屆全國分子光譜學學術會議在京隆重召開。此次會議的規模、參會人數以及期刊論文數

    中國科學家率先解析30納米染色質高級結構

      你真的了解自己的身體嗎?你知道一個細胞中的DNA加起來有2米長嗎?這么長的DNA怎樣被“塞”進僅有幾微米大小的細胞核呢?   其實,這也是科學家想要搞清楚的問題。   4月25日,美國《科學》雜志報道了中科院生物物理所一項關于30納米染色質高級結構解析的研究成果。這篇研究論文發表后,一個塵封

    這個傳感器可以涂在鐵軌和飛機上

    最近,香港理工大學的研究團隊開發出了一種嶄新的納米復合材料傳感器,可直接噴涂于平坦或彎曲的工程結構,如火車路軌和飛機結構。噴涂出來的傳感器可進一步構成傳感器網絡,為受監測的結構提供實時及豐富的結構健康狀況信息。據悉,納米復合材料傳感器由理大機械工程學系的蘇眾慶教授、周利民教授及以他們為首的團

    仿生學突破 EBL技術首次應用于蟬翅結構納米柱仿生制造

      生物體從宏觀到微觀,再到納米尺度的多級復合結構,使其具有諸多獨特的優異性能。人們很早就開始模仿生物的特殊功能,來發明和應用新技術。  例如人們根據蒼蠅特殊的“復眼”結構,仿照制成了“蠅眼透鏡”,用它作鏡頭可以制成“蠅眼照相機”,一次就能照出千百張相同的相片;還有仿照水母耳朵的結構和功能,人們設計

    上海應物所利用“DNA折紙術”構建等離子體納米結構

      在納米尺度自下而上構建高度有序且具有奇異光學性質的等離子體結構,一直是納米光子學領域的重要目標。近期,中國科學院上海應用物理研究所的研究人員利用結構精確可控的“DNA折紙術”(DNA origami) 構建了一系列精巧的二維等離子體納米結構。通過巧妙地將納米金粒子來橋連DNA折紙結構,可以像“七

    我國研究人員發現梯度材料的損傷容限

      尋求同時提高工程結構材料多種機械性能的方法是材料科學家長期努力的方向。材料科學家通過從自然材料中獲取靈感,制造出與之相似的材料,這就形成了“向自然學習”的概念。自然界中某些生物的獨特結構使其具有良好的機械性能,使得它們能夠對抗自然界的各種惡劣環境。其中一種結構為梯度結構,自然界中竹子結構便是典型

    JACS/Angew/AM 11篇,趙東元、彭笑剛、樓雄文、張強等成果速遞

      1. JACS:用于檢測癌細胞和腫瘤中溶酶體甲醛含量的雙“鎖鑰”釕復合探針  生物醫學研究表明,過量的甲醛生成是造成組織癌變、癌癥進展和轉移的關鍵因素之一。響應性分子探針可以檢測活細胞和腫瘤中溶酶體內的甲醛,并對藥物引發的甲醛清除過程進行監測,這也有助于未來的癌癥診斷和治療監測。  大連理工大學

    Science發文:納米管版“俄羅斯套娃”

      不同時期都有不同的研究熱門領域。過去十數年中一個新興的研究熱點是石墨烯和其他二維材料形成的異質結構,稱為范德華異質結構。2013年,Nature上對相關領域的一篇綜述如今引用已經超過5600,其研究火爆程度可見一斑。圖1. 火爆的范德華異質結構研究。圖片于2020年2月3日截取自Google S

    仿金針菇疏水材料

      這種材料采用苯二甲酸乙二醇酯(PET)的形式,在其表面上沉積一層緊密間隔的高而薄的納米結構,頂部有圓形斑點。金針菇同樣有長而細的莖,頂部是較大的圓形菌蓋。   被稱為納米enoki PET的塑料是透明的,水、牛奶、番茄醬,咖啡和橄欖油等液體可從其表面滑落。即使經過5000次彎曲循環,這些組合質量

    2013年度北京電子顯微學年會大會報告(一)

      2013年12月24日, 2013年度北京市電子顯微學年會在北京天文館隆重召開,會上,來自中科院、北京大學、北京工業大學、北京建筑大學、鋼鐵研究總院等多位專家學者帶來了關于電鏡在教學科研、納米材料、生物醫藥、探傷等方面應用的精彩報告,科揚、FEI、蔡司、布魯克、牛津

    中國學者的“折紙藝術”竟然登上了Science主刊?

      近日,中國科學院高鴻鈞團隊傳出喜訊,他們實現了在石墨烯上高精度的結構制作,精度已經達到了原子的級別。  這樣的研究成果不僅顯示了研究團隊對于納米結構制作的高超技術,也再次將石墨烯這一納米器件制作平臺推到了科學研究的最前沿,對于可控制造特殊性質的納米器件,例如量子器件,有重要研究意義。  此項成果

    物理所單一手性碳納米管旋光異構體分離與物性研究獲進展

      碳納米管因其一維的管狀分子結構,表現出優異的力學、電學和光學等性質,在微納光電子器件、生物醫藥、新能源材料等方面具有廣闊的應用前景。碳納米管特殊的性質來源于其結構。原子結構排列上的微小差異將導致碳納米管光電性質的巨大區別。如:碳納米管由于結構的不同可以是金屬性的,也可以是半導體性的;每一種手性碳

    《麻省理工科技評論》35位中國科技青年入選英雄榜!

      《麻省理工科技評論》于 2016 年正式落地中國,次年,“35 歲以下科技創新 35 人” (Innovators Under 35)中國榜單正式發布!四年成長、四屆榜單,我們持續關注和發掘中國科技發展中不斷崛起的新興力量。從實驗室里最新的技術研發成果,到各前沿領域的科技創業者們所取得的里程碑式

    中國科大基于多尺度界面設計創制高性能仿生珍珠層材料

      貝殼的珍珠層,由占主要部分的脆性碳酸鈣礦物和少量的柔性聚合物構成,雖然組分簡單,但其精致的多級結構和界面特點賦予其超出自身組分幾個數量級的優異力學性能。這種在溫和條件下由簡單材料組分生長實現的多級構造和性能放大,使貝殼的珍珠層受到研究人員的高度關注。礦物粘土和石墨烯等超薄納米片作為接近理想和無缺

    金屬所制備多種復合結構的錳氧化物納米復合薄膜

      最近,中國科學院金屬研究所沈陽材料科學國家(聯合)實驗室磁性材料與磁學研究部王占杰課題組,采用脈沖激光沉積方法,通過自組裝生長模式,制備了多種復合結構的錳氧化物納米復合薄膜;通過控制錳氧化物納米復合薄膜的微結構,實現了溫度區域可調的巨大的低場磁電阻效應。其中,具有棋盤狀納米結構的復合薄膜在室溫附

    長春光機所在卟啉分子自組裝納米結構合成方面獲新進展

      近期,由中科院長春光學精密機械與物理研究所與河南大學的科研人員合作開展的卟啉分子自組裝納米結構合成,以及利用該卟啉納米結構合成中空鉑金屬納米結構的研究取得了一系列進展,相關成果未來有望應用于燃料電池的研發。   卟啉及其衍生化合物廣泛存在于生物體內和能量轉移相關的重要細胞器內,如動物體內的血紅

    科研人員利用“DNA折紙術”構建等離子體納米結構

      在納米尺度自下而上構建高度有序且具有奇異光學性質的等離子體結構,一直是納米光子學領域的重要目標。近期,中國科學院上海應用物理研究所的研究人員利用結構精確可控的“DNA折紙術”(DNA origami) 構建了一系列精巧的二維等離子體納米結構。通過巧妙地將納米金粒子來橋連DNA折紙結構,可以像“七

    比空氣還輕?中國科學家研制新型超輕納米材料

      近日,國防科大航天科學與工程學院新型陶瓷纖維及其復合材料重點實驗室張長瑞教授團隊成功研制出一種具有超強吸附能力的新型超輕納米材料。該項研究成果內容被《自然》子刊《科學報告》錄用。  “這種材料結構上由一維氮化硼納米管和二維氮化硼納米晶片復合而成,密度低至0.6mg/cm3,僅為空氣的一半,水的1

    透射電鏡電子衍射技術 可全面分析晶體結構

    晶體材料由于具有有序結構而表現出許多獨特的性質,成為特定的功能材料,制成器件廣泛應用于微電子、自動控制、計算通訊、生物醫療等領域。功能晶體材料的的微觀結構決定其性能,因此對其微觀結構的解析一直是科學研究的熱點之一。    研究晶體結構通常的方法是 X-射線單晶衍射技術(SXR

    好消息!30納米染色質高級結構成功解析

      DNA如何包裝成染色體,是科學家們一直努力破解的重要科學問題。近30年來,由于缺乏系統、合適的研究手段,作為染色質包裝過程中承上啟下的關鍵部分,30納米染色質高級結構研究一直是現代分子生物學領域面臨的最大挑戰之一。李國紅(中)在工作  科學家已經發現,染色質包裝分4步完成,對應了染色質的四級結構

    國家重大科學研究計劃2011年度重要支持方向確定

    各省、自治區、直轄市、計劃單列市科技廳(委、局),新疆生產建設兵團科技局,國務院各有關部門辦公廳(室):  國家重大科學研究計劃是《國家中長期科學和技術發展規劃綱要(2006-2020年)》(以下簡稱《規劃綱要》)部署的、引領未來發展、對科學和技術發展有很強帶動作用的基礎研究發展計劃。  

    物理所揭示鋸齒形邊緣石墨烯納米帶中的電聲子耦合效應

      具有鋸齒形邊緣結構的石墨烯納米帶(Z-GNR)由于其獨特的金屬性邊緣態,已成為石墨烯研究領域內的一種重要結構。大量理論預言表明,鋸齒形邊緣結構由于邊界碳原子2p軌道上存在的非成鍵電子,導致了局域的自旋極化邊緣電子態,并且邊緣上電子自旋呈鐵磁性排列,因此在自旋閥、自旋存儲器件中將有

    中美材料領域合作研究項目開始提交全文申請

      前不久,國家自然科學基金委員會(NSFC)發布與美國國家科學基金會(NSF)共同征集資助材料領域合作研究項目的指南。期間共收到預申請簡表102份。  經初步審查,雙方確定74項通過預申請評審。基金委提示通過預申請簡表評審的申請人(請登錄基金委網站查詢)按照項目申請指南要求,于2011年11月15

    化學的貢獻將得到更加極致的體現

      姚建年:化學的貢獻將得到更加極致的體現   化學是一門在分子和原子水平上研究物質的性質、組成、結構、變化、制備及其應用,以及物質間相互作用關系的科學。作為一門極其重要的基礎學科,化學與人類的衣食住行以及能源、信息、材料、國防、環境、醫藥等方面都有密切聯系,在社會與經濟發展以及人類生活質量的不斷

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频