<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    多肽物質分離與分析方法研究(一)

    摘 要 綜述了近幾年來多肽類物質的提取分離與分析方法,主要包括高效液相色譜法、電泳、質譜及核磁共振等方法在肽類物質研究中的最新應用進展。 多肽類化合物廣泛存在于自然界中,其中對具有一定生物學活性的多肽的研究,一直是藥物開發的一個主要方向。生物體內已知的活性多肽主要是從內分泌腺組織器官、分泌細胞和體液中產生或獲得的,生命活動中的細胞分化、神經激素遞質調節、腫瘤病變、免疫調節等均與活性多肽密切相關。隨著現代科技的飛速發展,從天然產物中獲得肽類物質的手段也不斷得到提高。一些新方法、新思路的應用,不斷有新的肽類物質被發現應用于防病治病之中。本文介紹了近幾年肽類物質分離、分析的主要方法研究進展。 1 分離方法 采取何種分離純化方法要由所提取的組織材料、所要提取物質的性質決定。對蛋白質、多肽提取分離常用的方法包括:鹽析法、超濾法、凝膠過濾法、等電點沉淀法、離子交換層析、親和層析、吸附層析、逆流分溶、酶解法等[1]。這些方法常常......閱讀全文

    多肽物質分離與分析方法研究進展

      摘 要 綜述了近幾年來多肽類物質的提取分離與分析方法,主要包括高效液相色法、電泳、質譜及核磁共振等方法在肽類物質研究中的最新應用進展。  多肽類化合物廣泛存在于自然界中,其中對具有一定生物活性的多肽的研究,一直是藥物開發的一個主要方向。生物體內已知的活性多肽主要是從內分泌腺組織器官、分泌細胞和體

    蛋白質、多肽提取分離

    1 分離方法   采取何種分離純化方法要由所提取的組織材料、所要提取物質的性質決定。對蛋白質、多肽提取分離常用的方法包括:鹽析法、超濾法、凝膠過濾法、等電點沉淀法、離子交換層析、親和層析、吸附層析、逆流分溶、酶解法等。這些方法常常組合到一起對特定的物質進行分離純化,同時上述這些方法也是蛋白

    多肽物質分離與分析方法研究(二)

    1.2 親和層析(Affinity Chromatography,AC)  AC是利用連接在固定相基質上的配基與可以和其特異性產生作用的配體之間的特異親合性而分離物質的層析方法。自1968年Cuatrecasas提出親和層析概念以來,在尋找特異親和作用物質上發現了許多組合,如抗原-抗體、酶-催化底物

    蛋白質與多肽提取分離方法-1

    1 分離方法采取何種分離純化方法要由所提取的組織材料、所要提取物質的性質決定。對蛋白質、多肽提取分離常用的方法包括:鹽析法、超濾法、凝膠過濾法、等電點沉淀法、離子交換層析、親和層析、吸附層析、逆流分溶、酶解法等。這些方法常常組合到一起對特定的物質進行分離純化,同時上述這些方法也是蛋白、多肽類物質分析

    蛋白質與多肽提取分離方法-2

     1.1.7 灌注層析(Perfusion Chromatography,PC)PC是一種基于分子篩原理與高速流動的流動相的層析分離方法,固定相孔徑大小及流動相速度直接影響分離效果。試驗證明其在生產、制備過程中具有低投入、高產出的特性。目前市場上可供應的PC固定相種類較多,適合于不同分子量

    蛋白質與多肽提取分離方法-3

    1.3.4膠束電動毛細管層析(Micellar Electrokinetic Electorphoresis Chromatography, MECC)MECC的原理是在電泳液中加入表面活性劑,如SDS,使一些中性分子帶相同電荷分子得以分離。特別對一些小分子肽,陰離子、陽離子表面活性劑的應用都可使之

    七大特點確立 300? C18的優勢應用地位

    近年來,隨著基因組和蛋白質組計劃的實施,對不同蛋白質的快速分析,定性以及定量的需求更大,反相液相色譜以其快速簡便,靈敏度高,重復性好,分辨率高等優勢受到人們的重視,已成為一種常備的不可缺少的分析手段,并用于多肽藥物分離中。反相液相色譜與各種質譜技術的結合也已成為蛋白質結構分析的重要手段和發展方向。C

    毛細管電泳(Capillary electrophoresis,CE)——分離分析方法

    毛細管電泳(Capillary electrophoresis,CE)--分離分析方法CE是在傳統的電泳技術基礎上于本世紀60年代末由Hjerten發明的,其利用小的毛細管代替傳統的大電泳槽,使電泳效率提高了幾十倍。此技術從80年代以來發展迅速,是生物化學分析工作者與生化學家分離、定性抗原肽與蛋白

    凝膠層析法概述

    凝膠層析法(gel chromatography)也稱分子篩層析法,是指混合物隨流動相經過凝膠層析柱時,其中各組分按其分子大小不同而被分離的技術。該法設備簡單、操作方便、重復性好、樣品回收率高,除常用于分離純化蛋白質、核酸、多糖、激素等物質外,還可用于測定蛋白質的相對分子質量,以及樣品的脫鹽和濃

    現代生物分離技術在多肽蛋白質分離純化中的應用

    摘要:蛋白質是生物體的重要組成部分,在現代生物制藥領域有著重要的作用,本文介紹了現代生物分離技術反膠束萃取、雙水相萃取和電泳在多肽蛋白質分離中的應用和現狀。關鍵詞:蛋白質  反膠束萃取  雙水相萃取  電泳一、前言隨著基因工程和細胞工程的發

    毛細管電色譜的應用及發展

    毛細管電色譜的應用及發展毛細管電色譜(Capillary electrochromatography, 簡稱 CEC)是在毛細管中填充或在管壁涂布、鍵合液相色譜的固定相,然后在毛細管的兩端施加高壓直流電,在電場作用下產生電滲流(Electroosmotic f

    臨床蛋白電泳及進展/基本知識/概述

    分散介質中的帶電粒子在直流電場的作用下,向著與其電性相反的電極移動的現象稱為電泳(electrophoresis)。蛋白質為兩性電解質,在不同pH溶液中帶不同的電荷,從而在直流電場中能夠泳動,這就是蛋白質的電泳現象。1937年瑞典化學家Tiselius首先建立了蛋白質的界面電泳技術,并成功地將血清

    臨床蛋白電泳及進展/基本知識/概述

    分散介質中的帶電粒子在直流電場的作用下,向著與其電性相反的電極移動的現象稱為電泳(electrophoresis)。蛋白質為兩性電解質,在不同pH溶液中帶不同的電荷,從而在直流電場中能夠泳動,這就是蛋白質的電泳現象。1937年瑞典化學家Tiselius首先建立了蛋白質的界面電泳技術,并成功地將血清蛋

    基于高壓制備液相的多維色譜技術在中藥分離純化中應用

      1 引 言   中藥廣泛應用于疾病的預防和治療[1]。快速分離純化技術對于理解中藥復雜的物質基礎、控制中藥質量和發現潛在活性物質具有重要意義,也是目前中藥研究的熱點問題之一。作為分析型高效液相色譜系統的延伸,高壓制備液相系統能夠在保證樣品分離度的前提下,大幅度提高載樣量,從而快速獲得高

    第19屆全國色譜大會特邀報告(一)

      2013年4月1日,第19屆全國色譜學術報告會及儀器展覽會在福州西湖賓館召開,來自中國科學院大連化學物理研究所的張玉奎院士、南京大學陳洪淵院士、中國科學院生態環境研究中心的江桂斌院士和國家自然科學基金委員會化學科學部莊乾坤主任等多名色譜界專家分別做了特邀報告。各專家

    上海同田中標浙江萬里學院逆流色譜項目

            經過激烈的供應商競爭,上海同田憑借自身在逆流色譜行業的技術優勢中標浙江萬里學院高速逆流色譜項目。       

    磁珠法分離純化DNA原理及其步驟

    磁珠法純化DNA主要是利用利息交換吸附材料吸附核酸,從而將核酸和蛋白質等其細胞中其他物質分離。本文主要概述了磁珠法純化DNA原理、核酸分離與純化的原則、核酸分離與純化的步驟。磁珠法 純化DNA原理磁珠法核酸純化技術采用了納米級磁珠微珠,這種磁珠微珠的表面標記了一種官能團,能同核酸發生吸附反應。硅磁(

    親和層析法概述

    親和層析法是利用生物大分子與某些對應的專一分子特異識別和可逆結合的特性而建立起來的一種分離生物大分子的色譜方法,也叫做生物親和或生物特異性親和色譜。這種特異可逆結合的物質很多,見表6–3。如抗原與抗體、底物與酶、激素與受體等,他們間的這種特異親和能力又叫親和力。親和色譜中,一對互相識別的分子互稱對方

    影響電泳的因素

    1.電場強度 電場強度也稱電位梯度,它是指單位長度的電位降。電場強度對電泳起重要的作用。電場強度愈大,則帶電粒子的移動愈快。根據所用電場強度大小,可將電泳分為常壓電泳(100~500V)和高壓電泳(500~10000V)。常壓電泳分離時間長,多用于分離蛋白質等大分子物質;高壓電泳分離時間短,多用來

    影響電泳的因素

    1.電場強度 電場強度也稱電位梯度,它是指單位長度的電位降。電場強度對電泳起重要的作用。電場強度愈大,則帶電粒子的移動愈快。根據所用電場強度大小,可將電泳分為常壓電泳(100~500V)和高壓電泳(500~10000V)。常壓電泳分離時間長,多用于分離蛋白質等大分子物質;高壓電泳分離時間短

    核酸分離與純化的原理及其方法學進展

    核酸的分離與純化技術是生物化學與分子生物學的一項基本技術。隨著分子生物學技術廣泛應用于生物學、醫學及其相關等領域,核酸的分離與純化技術也得到進一步發展。各種新方法、經完善后的傳統經典方法以及商品試劑方法的不斷出現,極大地推動了分子生物學的發展。現就核酸分離與純化的原理及其方法學進展作一綜述。核酸分離

    核酸分離與純化的原理及其方法學進展

     核酸的分離與純化技術是生物化學與分子生物學的一項基本技術。隨著分子生物學技術廣泛應用于生物學、醫學及其相關等領域,核酸的分離與純化技術也得到進一步發展。各種新方法、經完善后的傳統經典方法以及商品試劑方法的不斷出現,極大地推動了分子生物學的發展。現就核酸分離與純化的原理及其方法學進展作一綜

    核酸分離與純化的原理及其方法學進展

    核酸的分離與純化技術是生物化學與分子生物學的一項基本技術。隨著分子生物學技術廣泛應用于生物學、醫學及其相關等領域,核酸的分離與純化技術也得到進一步發展。各種新方法、經完善后的傳統經典方法以及商品試劑方法的不斷出現,極大地推動了分子生物學的發展。現就核酸分離與純化的原理及其方法學進展作一綜述。核酸分離

    磁珠法分離純化DNA原理及其步驟

        磁珠法純化DNA原理    磁珠法核酸純化技術采用了納米級磁珠微珠,這種磁珠微珠的表面標記了一種官能團,能同核酸發生吸附反應。硅磁(Magnetic Silica Particle)就是指磁珠微珠表面包裹一層硅材料,來吸附核

    高效液相色譜之高效排阻液相色譜

    高效液相色譜(High Rerformance Liquid Chromatography, HPLC)又叫高壓、高速、近代液相色譜,通常叫做高效液相色譜。它是60年代中期才建立的一種高效快速分離化合物的方法,到了70年代后期才廣泛用于蛋白質的分離純化方面,現已成為分離純化蛋白質非常有效的方

    生物藥物分析方法

      生物藥物包括直接從生物體分離純化所得生化藥物及利用基因重組技術或其它生物技術研制的生物技術藥物及生物制品。由于生物藥物具有毒性低、副作用小、易被吸收的特點,同時具有多方面的生物活性及功能,在疾病的預防、診斷及治療方面有著突出貢獻。隨著人們對生命本質及身體健康的日益關注,生物藥物的研究和開發日趨增

    微流控系統中毛細管電泳(CE)分離技術

    前言微流控芯片是以微管道為網絡連接微泵、微閥、微儲液器、微電極、微檢測元件等既有光、電和流體輸送功能的元件,最大限度地把采樣、稀釋、加試劑、反應、分離、檢測等分析功能集成在芯片上的微全分析系統。微流控芯片(Microfluidic Analysis)是微分析系統的主要組成部分,它與生物芯片(Bi

    電泳的原理、分類和應用

      【概述】帶電顆粒在電場作用下,向著與其電性相反的電極移動,稱為電泳(electrophoresis, EP)。利用帶電粒子在電場中移動速度不同而達到分離的技術稱為電泳技術。  1807年,由俄國莫斯科大學的斐迪南·弗雷德里克·羅伊斯(Ferdinand Frederic Reuss)最早發現。 

    反相高效液相色譜與質譜聯用分析合成七肽的消旋產物

    摘要 采用反相高效液相色譜(RPHPLC)與質譜(MS)聯用技術對固相法化學合成七肽(H2NPFNSLAICOOH,Mr 760.9)時出現的消旋產物進行了分析。根據弱疏水性合成七肽粗品特性,提出了充分利用吸附和分配雙重保留機制的“早期吸附”概念,以此優化色譜條件得到4個峰形良好的色譜峰;

    等電聚焦(isoelectric focusing)

    等電點聚焦就是在電泳槽中放入載體兩性電解質,當通以直流電時,兩性電解質即形成一個由陽極到陰極逐步增加的pH梯度,當蛋白質放進此體系時,不同的蛋白質即移動到或聚焦于與其等電點相當的pH位置上,電聚焦的優點是:有很高的分辨率,可將等電點相差0.01-0.02pH單位的蛋白質分開;一般電泳由于受擴散作用的

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频