從單細胞生命到多細胞生物的跳躍要比人們曾經認為的簡單。而且,看上去發生這種跳躍的途徑不止一個。酵母菌能演化形成像雪花一樣的多細胞生物體。圖片來源:Courtesy of Jennifer Pentz 單一基因的突變足以將單細胞的啤酒酵母變成多細胞生物體演化的“雪花”。同樣,當面對吞食單細胞的捕食者時,單細胞藻類能很快演化成球形多細胞生物體。這些發現支持了一個正在興起的觀點:這種復雜度上的跳躍并不是科學家此前認為的巨大進化障礙。 在生命首次出現后的某一時刻,一些細胞聚在一起形成首個多細胞生物體。這可能發生在21億年以前,其他的也隨之而來。多細胞生物被認為獨立進化了至少20次,最終形成了復雜生命,比如人類。不過,在過去兩億年間,沒有任何一種已知生物體經歷了這種轉變,因此這個過程如何以及為何發生很難研究。 2011年,美國明尼蘇達大學進化生物學家William Ratcliff和Michael Travisano通過將最快沉......閱讀全文
“十三五”期間,通過支持我國優勢學科和交叉學科的重要前沿方向,以及從國家重大需求中凝練可望取得重大原始創新的研究方向,進一步提升我國主要學科的國際地位,提高科學技術滿足國家重大需求的能力。各科學部遴選優先發展領域及其主要研究方向的原則是: (1)在重大前沿領域突出學科交叉,注重多學科協同攻關,
近年來,隨著測序技術的迅猛發展,單細胞測序技術已逐漸走入人們視野。2013年,單細胞測序技術成為《自然》評選的“Method of the Year”。大多數的基于NGS的基因檢測,都是在大量細胞宏觀水平上,對整個細胞群進行遺傳分析。單細胞測序技術則是在單個細胞的水平上,對其遺傳物質進行檢測,從
將團藻(擁有數百個細胞的藻類)與其相對簡單的親緣物種——單細胞衣藻(左上)和擁有4~16個細胞的盤藻(右上)作對比,揭示了向多細胞生命發展的步驟。圖片來源:《科學》 數十億年前,生命跨過了一個門檻。單細胞開始結合在一起,沒有形態的、單細胞生命的世界踏上了一條演化征程,并形成了今天從螞蟻到梨
近兩年精準醫學的概念逐漸深入人心,這是一種將個人基因、環境與生活習慣差異考慮在內的疾病預防與處置的新興方法。2015年1月20日,美國總統奧巴馬在國情咨文中提出“精準醫學計劃”,希望精準醫學可以引領一個醫學新時代。隨后習近平總書記批示科技部和國家衛生計生委,要求國家成立中國精準醫療戰略專家組,科
時光總是匆匆而逝,12月份已經開始,2017年也已接近尾聲,迎接我們的將是嶄新的2018年,2017年三大國際著名雜志Cell、Nature和Science(CNS)依舊刊登了很多突破性耐人尋味的研究,本文中小編首先對2017年Science雜志發表的重磅級亮點研究進行盤點,分享給大家!與各位一
核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的
2013年6月6日,實驗室自動化與篩選協會2013亞洲會展在上海金茂君悅大酒店盛大開幕,國內外知名藥企、生物醫學研究專家、學者等應邀參會。“微納米技術探索生物系統”分論壇于6月6日下午在B廳舉行,由中國科學院化學研究所有機固體院重點實驗室研究員王樹濤博士、上海交通大學教授施奇惠博士、清華大學醫學
微流控技術是一種對微尺度流體(微升到皮升量級)進行精確控制和操縱的技術。近二三十年來,得益于納米制造技術的成熟與生化技術對操縱微量液體的需求,微流控技術取得了飛速的發展。與傳統的檢測方法相比,基于微流控平臺的檢測技術具有節省樣本與試劑用量,反應速度更快,高通量,易便攜,自動化潛力高等優勢。1998年
即將過去2018年,中國大陸學者在神經科學的基礎、臨床及技術方法等領域取得了豐碩的成果。 據不完全統計,以第一作者(含共同第一作者)單位或通訊作者(含共同通訊)單位在國際頂級期刊Cell、Nature和Science 即CNS發表以神經科學為主體的研究論文共計19篇。其中,論文第一作者單位和最
1. NEJM:工程胰島細胞移植讓一名糖尿病患者恢復胰島素產生能力 1型糖尿病讓一名43歲的女性依賴于胰島素。如今,在一項新的研究中,醫生們通過將工程胰島細胞移植到她的腹部恢復了她的身體產生這種激素的能力。這名病人在接受移植一年后仍然保持胰島素不依賴性,而且根據一篇新聞稿的報道,她是測試這種糖
遺傳篩選是生物學中最有力的工具,它可以闡明復雜的生物過程。最近四項研究已經開發了一個新的遺傳分析方法,通過使用單個細胞作為微觀實驗室,測定擾動。這些研究開發了CROP-seq、PERTURB-seq和CRISP-seq技術,克服了現有基因篩查方法的局限性,并且可以分析一些原本無法分析的樣本。
如今,科學家們應用測序技術在多項研究領域都取得了顯著的成果,那么近期他們又取得了哪些成果呢?本文中,小編就對相關研究結果進行整理,分享給大家! 【1】Science:便攜式DNA測序儀在檢測病毒疫情中大顯身手 doi:10.1126/science.aau9343 在一項新的研究中,來自美
經過特殊的算法,我們得到了2018年前10個月中國生物醫學風云榜人物及最火爆的3個重大學術界事件,能夠上榜的風云人物/事件,都曾長時間占據過100多個公生物醫學公眾號的頭版頭條。 在此,我們精選了其中的3個事件及16位風云榜人物。我們對其進行了劃分,分別是:6星級的3個事件,分別位諾貝爾獎,國
一個腫瘤內的個體細胞并不全是相同的。這可能聽起來像是一個現代醫學真理,但很久以前并不是這樣,當時醫生認為,從患者腫瘤采集的單一活檢標本,能準確地反映整個腫瘤的生理和遺傳構成。 研究人員開始意識到,癌癥這種疾病是由相同的“適者生存”力量所驅動的,達爾文提出,適者生存推動了地球上生命的進化。然而,
Renato Zenobi坐在一樓的辦公室里,這是一間通往牧場的工業實驗室。這位分析化學家解釋了細胞生物學家正面臨的一個基本問題。他在跟蹤代表理論細胞群中分子平均集中度的一條曲線—— 一條簡單的鐘形分布曲線。他解釋說,這樣的分布會隱藏復雜性。為了證明這一點,他畫了兩條與單峰的每一邊相重合的曲線,
Renato Zenobi坐在一樓的辦公室里,這是一間通往牧場的工業實驗室。這位分析化學家解釋了細胞生物學家正面臨的一個基本問題。他在跟蹤代表理論細胞群中分子平均集中度的一條曲線—— 一條簡單的鐘形分布曲線。他解釋說,這樣的分布會隱藏復雜性。為了證明這一點,他畫了兩條與單峰的每一邊相重合的曲線,
Renato Zenobi坐在一樓的辦公室里,這是一間通往牧場的工業實驗室。這位分析化學家解釋了細胞生物學家正面臨的一個基本問題。他在跟蹤代表理論細胞群中分子平均集中度的一條曲線—— 一條簡單的鐘形分布曲線。他解釋說,這樣的分布會隱藏復雜性。為了證明這一點,他畫了兩條與單峰的每一邊相重合的曲線,
通過CRISPR/Cas9基因組編輯系統的組成型過量表達而產生的擬南芥突變體,通常在T1代是嵌合體。七月二十一日,來自中國農業大學的研究人員在國際生物學權威期刊《Genome Biology》發表的一項研究中,利用卵細胞特異性的啟動子,來驅動Cas9的表達,并以很高的效率獲得了多個靶基因的非嵌合
截至2019年12月23日,中國學者在Cell,Nature及Science在線發表了107篇文章(2019年的Cell ,Nature 及Science 已經全部更新),iNature團隊對于這些文章做了系統的總結: 按雜志來劃分:Cell 發表了31篇,Nature 發表了44篇,Scie
現如今,科學家已經證明,遺傳物質就像音樂樂譜一樣,指揮著銅樂,弦樂,打擊樂器等創作出交響樂來,當單個細胞中的基因開啟時,我們可以通過技術組合揭示細胞是如何發揮其特殊的作用,從而以驚人的力量,逐個細胞,實時追蹤生物和器官的發育。 美國的《Science》雜志由愛迪生投資創辦,是國際上著名的自然科
實驗步驟 一、桿狀病毒表達載體 最簡單的經典桿狀病毒表達載體是一個重組的桿狀病毒,其基因組含有一段外源核酸序列,通常為編碼目標蛋白質的dDNA,在多角體蛋白啟動子控制下進行轉錄。這個嵌合的基因由多角體蛋白啟動子和外源蛋白編碼序列組成
【51/52】2019年4月4日,清華大學柴繼杰課題組、中科院遺傳發育所周儉民課題組和清華大學王宏偉課題聯合同期背靠背發表兩篇重量級Science文章,完成了植物NLR蛋白復合物的組裝、結構和功能分析,揭示了NLR作用的關鍵分子機制,是植物免疫研究的里程碑事件。兩篇文章分別是: "Li
今天黨的十九大召開,習近平大大指出:中國特色社會主義進入新時代,我國社會主要矛盾已經轉化為人民日益增長的美好生活需要和不平衡不充分的發展之間的矛盾。想想都覺得高中政治課本過時了,而考研又多了一道大題。然而這些年,醫療領域進展可不止一點!就讓我們一起看看這些年,分子病理領域的發展! 其實相對于其
環狀RNA(circular RNA,circRNA)是一種新興的內源性非編碼RNA(noncoding RNA,ncRNA),是繼microRNA (miRNA)以及long noncoding RNA (IncRNA)后非編碼RNA家族中極具研究潛力的新成員。越來越多的研究表明,環狀RNA具
近年來,科學創新日漸進入"大數據"時代,各種高通量的分析手段以及各類"組學"的發展,使得我們對生命科學的基本原理以及與人類健康有關的疾病發生機制方面有了更加深入的認識。針對最近一段時間以來科學家們利用"大數據"的手段產生的科學進展,我們
《Nature Methods》盤點2015年度技術,選出了最受關注的技術成果:單粒子低溫電子顯微鏡(cryo-EM)技術。 除此之外,也整理出了2016年最值得關注的幾項技術,分別為:細胞內蛋白標記(Protein labeling in cells)、細胞核結構(Unraveling nuc
細胞是生物學的基本單位,近年來研究人員正努力地嘗試將它們進行單個分離、研究和比較。而應用而生的就是單細胞測序技術,該技術是指DNA研究中涉及測序單細胞微生物相對簡單的基因組,更大更復雜的人類細胞基因組。而隨著測序成本的大幅度下降,破譯來自單細胞的30億堿基的基因組并對逐個細胞進行序列比較已經開始
時至歲末,轉眼間2019年已經接近尾聲,迎接我們的將是嶄新的2020年,在即將過去的2019年里,科學家們在癌癥檢測領域取得了多項重要的研究成果,本文中,小編就對本年度科學家們在癌癥檢測研究領域取得的重磅級研究成果進行整理,分享給大家! 圖片來源:CC0 Public Domain 【1】J
1. MIT與哈佛大學“多基因風險評分”技術可預測5種嚴重疾病的風險 麻省理工學院和哈佛大學Broad研究所的科學家表示,他們已經開發出一種基因組篩查工具,它可以預測乳腺癌,2型糖尿病,冠狀動脈疾病,心房顫動和炎癥性腸病的風險。識別這些高風險人群,有利于提供個體化的預防性護理。Broad團隊與麻省總
【50】2019年4月12日,中科院上海藥物所徐華強,王明偉,浙江大學張巖及匹茲堡大學醫學院Jean-Pierre Vilardaga共同通訊在Science發表題為“Structure and dynamics of the active human parathyroid hormone r