發現新的具有更高超導轉變溫度的超導材料和理解高溫超導電性的產生機理是當今超導研究的兩個重要方向。2008年發現的鐵基超導體,其最高超導溫度達到55K。最近,清華大學物理系薛其坤研究組和中科院物理研究所的馬旭村研究組合作,在SrTiO3襯底上成功生長出了FeSe薄膜,并在單層FeSe薄膜中發現可能存在接近液氮溫度(77K)的超導轉變跡象。這項工作,一方面可能打破鐵基超導體最高超導溫度55K的紀錄;另一方面,因為該超導溫度遠高于塊材FeSe常壓下的超導轉變溫度~8K和高壓下能達到的Tc~36.7K,這一結果相當地出人意料。到底是什么原因使得SrTiO3襯底上生長的單層FeSe薄膜顯示出如此奇異的超導特性?針對這一問題的研究,對理解鐵基超導體的超導機理,以及對研究如何提高材料的超導轉變溫度,都有著重要的意義。 中科院物理研究所/北京凝聚態物理國家實驗室(籌)超導國家重點實驗室周興江研究組劉德發、牟代祥、何俊峰、趙林......閱讀全文
鐵基超導體作為繼銅氧化物超導體之后的第二類高溫超導體,其超導機理是凝聚態物理研究的重要課題。絕大多數鐵基超導體具有位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面。一種普遍的超導機理(費米面“嵌套”)認為,電子在電子型與空穴型費米面之間的散射,是鐵基超導體中電子配對和超導電性產生的
2011年12月12日,由教育部科學技術委員會組織評選的2011年度“中國高等學校十大科技進展”在京揭曉。現將2011年度入選項目名單予以介紹。 一、正調控水稻種子大小、粒重和產量的GS5基因克隆與功能研究 主持單位:華中農業大學 主持人:何予卿 經過近10年的研究,由華中農業大學
2012年,清華大學物理系薛其坤研究組和中科院物理研究所表面物理國家重點實驗室馬旭村研究組在鈦酸鍶(SrTiO3)襯底上成功制備出單層FeSe薄膜,并在掃描隧道譜上觀察到大的能隙,預示著該材料有可能存在接近液氮溫區(77K)的高溫超導電性【Chin. Phys. Lett. 29 (2012
物理與材料學領域 【1】2019年12月11日,中科院物理所張余洋、丁洪及高鴻鈞共同通訊在Science 在線發表題為“Nearly quantized conductance plateau of vortex zero mode in an iron-based superconducto
鐵基超導體是一類重要的非常規高溫超導體,目前主要由鐵砷、鐵硒兩大類超導材料構成。二元鐵硒是結構最為簡單的鐵基超導體,其超導轉變溫度Tc= 8K,最早由吳茂昆小組發現。對于鐵基等非常規超導體,為了優化超導電性,通常需要向材料中引入適量的載流子。因此,可根據引入載流子的類型,將其分為電子或空穴型超導
鐵基超導體是一類重要的非常規高溫超導體,目前主要由鐵砷、鐵硒兩大類超導材料構成。二元鐵硒是結構最為簡單的鐵基超導體,其超導轉變溫度Tc= 8K,最早由吳茂昆小組發現。對于鐵基等非常規超導體,為了優化超導電性,通常需要向材料中引入適量的載流子。因此,可根據引入載流子的類型,將其分為電子或空穴型超導
12月19日,中國科學院發布改革開放四十年40項標志性重大科技成果。 中科院以“三個面向”為線索,在系統梳理改革開放40年來廣大科研人員取得的眾多重大科技成果基礎上,發布面向世界科技前沿成果15項、面向國家重大需求成果15項、面向國民經濟主戰場成果10項。 習近平總書記在慶祝改革開放40周年
“姜尚因命守時,立鉤釣渭水之魚,不用香餌之食,離水面三尺, 尚自言曰:‘負命者上鉤來!’” &nb
2016年度國家最高科學技術獎獲獎人 趙忠賢 院士 Zhao Zhongxian 中國科學院物理研究所 由中國科學院推薦 趙忠賢,男,1941年出生,遼寧新民人,1964年中國科學技術大學畢業后到中國科學院物理研究所工作至今。曾擔任國防課題組業務負責人和超導國家重點實驗室主任。現任中國科學
鐵基超導體和拓撲絕緣體是近年來凝聚態物理研究的熱點問題。鐵基超導體是非常規超導體,不同于傳統的電聲耦合機制的BCS超導體,其超導配對機制的解釋仍然是凝聚態物理理論的一個難點;同時,不同于單帶的銅基非常規超導體,鐵基超導體的多帶特性使其具有更豐富的電子結構。拓撲絕緣體的發現突破了人們對絕緣相的認識
鐵基超導家族中的兩個亞族,分別以結構類似的 FeSe4 和 FeAs4 四面體層作為各自的超導基元。然而典型的 FeSe 基超導體 AyFe2-xSe2(A=堿金屬離子)母體相和正常態的實驗表現,卻與 FeAs 基體系迥異,導致質疑這兩大鐵基體系的高溫超導電性是否有共同物理起源。澄清這一問題對探
FeAs基超導體的超導電性被普遍認為源自自旋漲落誘導的近似嵌套空穴型費米面和電子型費米面之間的帶間散射。2010年11月,鐵基超導體KFe2Se2【Phys. Rev. B 82, 182520 (R) (2010)】的發現引發了國際上鐵基超導新的研究熱潮。 中科院物理研究所/北京凝聚
天下同歸而殊途,一致而百慮。 ——《周易·系辭下》
因對稱性破缺而出現的有序電子態是凝聚態物理研究中俯拾皆是的基本現象。類比于液晶中的向列相,物理學家提出在關聯電子材料中同樣可能存在類似的“電子向列相”,即由于電子相互作用,系統呈現出打破晶格固有的旋轉對稱性的電子態。在鐵基超導材料中,隨著溫度的降低,其母體大多將經歷從四重對稱的四方相到二重對稱的
最近,《科學》發表了中科院物理研究所/北京凝聚態物理國家實驗室(籌)表面物理實驗室馬旭村研究組與清華大學物理系薛其坤研究組合作,在鐵基超導體FeSe電子配對對稱性研究中取得的新進展。這是我國科學家首次在Science雜志上刊登該領域的研究成果。 鐵基超導體是繼銅
孿晶界作為一種晶體缺陷,對超導材料的性質以及技術應用如超導轉變寬度和臨界電流等有著重要的影響。在很多傳統超導體中,孿晶界附近的超導轉變溫度會略有提高。由于較短的相干長度和較強的各向異性使得缺陷對高溫超導體的超導性質的影響很大,如YBCO的孿晶界能夠釘扎磁通,由此使臨界電流提高。對鐵基超導材料而言
上世紀80年代末90年代初,中、美、日三國科學家的“超導大戰”至今仍讓人記憶猶新。在那場“大戰”中,中國科學院物理研究所超導研究團隊不分晝夜地在實驗室工作,困得實在受不了了,就在桌子上躺一躺或在椅子上靠一會兒打個盹兒,醒了繼續做實驗。那時,他們研究的是銅氧化物高溫超導體。 正是在這一波研究
費米面拓撲結構及其與磁性的相互關聯,被認為是理解鐵基高溫超導機理的關鍵。大多數FeAs基高溫超導體的能帶結構包含位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面,因此,空穴和電子費米面之間的散射被普遍認為是鐵基超導電子配對的重要機制。但是,在FeSe基高溫超體系中,包括AxFe2-
費米面拓撲結構及其與磁性的相互關聯,被認為是理解鐵基高溫超導機理的關鍵。大多數FeAs基高溫超導體的能帶結構包含位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面,因此,空穴和電子費米面之間的散射被普遍認為是鐵基超導電子配對的重要機制。但是,在FeSe基高溫超體系中,包括AxFe2-
序號獲獎者姓名工作單位獎項1白雪冬中國科學院物理研究所胡剛復物理獎2何 源中國科學院近代物理研究所胡剛復物理獎3劉運全北京大學饒毓泰物理獎4盧仲毅中國人民大學葉企孫物理獎5靳常青中國科學院物理研究所葉企孫物理獎6林承鍵中國原子能科學研究院吳有訓物理獎7何紅建清華大學王淦昌物理獎8苑長征中國
鐵基高溫超導體的母體化合物中,隨著溫度降低往往會發生四方-正交結構相變,造成旋轉對稱性的破缺(C4→C2),形成電子向列序(nematic order),而且在向列序發生的同時或者稍低溫度會進一步出現長程反鐵磁序。通過化學摻雜或者施加壓力等調控手段將磁有序和向列序抑制掉會誘導高溫超導電性。因此,
盡管安全性一度遭到質疑,但基因編輯技術發展勢頭不可阻擋。 基因測試新技術 新概念造影劑“納米MRI燈” 巴西轉基因大豆 記錄DNA數據 具隱身效果的膜材料(模擬效果圖) 耐水性超薄太陽能電池 美 國 基因編輯技術火熱 干細胞研究獲突破 美科學家開展了該國首個對人類胚胎的基因編輯
自2008年被發現以來,已有至少20種不同結構鐵砷化物或鐵硒化物被證實存在超導電性,它們統稱為鐵基超導體。由于鐵基超導體同樣可以突破BCS強耦合理論預言的40K的麥克米蘭極限,它和銅氧化物超導體一起被列入高溫超導家族,其超導微觀機理問題至今仍是凝聚態物理前沿領域皇冠上的明珠。 經過多年研究,人
2019年10月31日,《自然》(Nature)主刊發表兩篇復旦大學科研團隊重磅研究成果! 復旦大學魯伯塤、丁澦、費義艷團隊合作研發亨廷頓病潛在新藥魯伯塤教授和學生丁澦副教授和學生費義艷副研究員和學生 亨廷頓病(或稱亨廷頓舞蹈癥)位列四大神經退行性疾病之一,臨床表現為不自主的舞蹈樣動作、認知
世界超導百余年研究史中,在兩次高溫超導領域的研究取得重大突破的關鍵時刻,趙忠賢帶領的團隊都“跑”在前列。五十年磨一劍,趙忠賢用一輩子的熱愛與堅守,讓中國高溫超導科研地位躋身國際前列。因在科學研究領域作出的卓越貢獻,3月21日華人盛典組委會公布趙忠賢獲得2016-2017年度“影響世界華人大獎”提
亨廷頓病(或稱亨廷頓舞蹈癥)位列四大神經退行性疾病之一,臨床表現為不自主的舞蹈樣動作、認知障礙、精神異常等癥狀。由于引起該病的變異亨廷頓蛋白(mHTT)生化活性未知,無法靶向,傳統依靠阻斷劑以阻斷致病蛋白活性的方法并不適用。 近日,復旦大學生命科學學院魯伯塤與丁澦課題組(醫學神經生物學國家重點
凌晨兩三點鐘,中國科學院物理研究所(以下簡稱物理所)研究員王楠林和同事陳根富、雒建林匆匆走出D樓的大門,各自回家休息。 三四個小時后,他們又回到實驗室繼續工作。 2008年3月,鐵基超導研究競爭全面鋪開,王楠林和他的同事經常要過著這樣的生活:在實驗室工作到凌晨,回家沖個澡,休息幾個小
2008年發現的鐵基超導體其超導轉變溫度最高可達55K,是繼1986年發現的銅氧化物高溫超導體之后發現的第二類新的高溫超導體系。它的發現,為高溫超導電性的研究開辟了一個新的方向。與銅氧化物高溫超導體的研究類似,鐵基超導體研究的核心問題是理解其高溫超導電性產生的機理。對材料電子結構
近日,中國科學院上海硅酸鹽研究所、上海微系統與信息技術研究所、北京大學等共同合作研究,通過化學剝離成單層TaS2納米片,以及納米片抽濾自組裝而重新堆疊成TaS2薄膜。重新組裝的TaS2薄膜打破了原母體的晶體結構,形成了豐富的均質界面,并獲得了比母體材料更高的超導轉變溫度和更大的上臨界場。相關研究
非常規超導體中所呈現奇異量子物性的物理根源常常認為來自于零溫下的量子相變及其相關漲落。在鐵基超導體中,通過對反鐵磁母體進行載流子或等價位摻雜均可抑制反鐵磁性,并在磁性區域邊緣誘導出最佳超導電性。因此,在反鐵磁區和順磁區的零溫邊界處很可能存在磁量子臨界點,在其附近的有限溫度區域會因量子臨界特性而影