<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    化學所在二維材料自組裝研究中取得進展

    二維過渡金屬二硫族化合物(TMDs),由于量子限域效應,展示了許多與其塊體材料不同的光、電、磁性質。具有本征帶隙的二維TMDs,作為零帶隙石墨烯材料的互補材料,為新型場效應晶體管與光電器件提供了新的可能。最近關注的焦點集中于它們本征的或者平面異質結結構的制備及其性質、應用的研究,尤其是在二維尺度的研究上。除了二維尺寸和形式的變化,原子級薄的TMDs片自組裝,是一個新興的領域,目前探索很少。作為一種紙狀的薄膜材料,通過折疊和卷曲的組裝過程可以把二維材料相對簡單的結構變成復雜的拓撲結構,如納米卷(NS)。這種納米卷在繼承原有結構優異特性的同時,可能產生與眾不同的新性質。但是,目前的研究現狀受限于機械強度和化學穩定性,高質量TMDs納米卷的制備存在巨大的挑戰。 在國家自然科學基金委和中國科學院先導項目的大力支持下,中科院化學研究所有機固體重點實驗室研究員鄭健課題組研究人員開發了一種簡便的溶液誘導組裝方法,可以幾乎無損地獲得本征T......閱讀全文

    比空氣還輕?中國科學家研制新型超輕納米材料

      近日,國防科大航天科學與工程學院新型陶瓷纖維及其復合材料重點實驗室張長瑞教授團隊成功研制出一種具有超強吸附能力的新型超輕納米材料。該項研究成果內容被《自然》子刊《科學報告》錄用。  “這種材料結構上由一維氮化硼納米管和二維氮化硼納米晶片復合而成,密度低至0.6mg/cm3,僅為空氣的一半,水的1

    物理所等三位科研人員訪問合肥研究院

       8月14日上午,中國科學院物理研究所白雪冬研究員、北京大學齊利民教授和北京理工大學曲良體教授應邀訪問中科院合肥物質科學研究院固體物理研究所,并先后做了三場學術報告,報告會由葉長輝研究員、李越研究員主持。  白雪冬研究員做了題為“高分辨納米表征與器件機理研究”的學術報告,報告詳細介紹了近幾年發展

    2016國際熒光前沿技術高端論壇(FluoroFest)在京開幕

      分析測試百科網訊 2016年4月19日,2016國際熒光前沿技術高端論壇(2016 FluoroFest)在北京大學開幕。FluoroFest 是一個全球性的熒光學術論壇,旨在促進相關領域的廣大科技工作者交流最新熒光技術,推動跨學科及領域的經驗分享與合作。

    化學的貢獻將得到更加極致的體現

      姚建年:化學的貢獻將得到更加極致的體現   化學是一門在分子和原子水平上研究物質的性質、組成、結構、變化、制備及其應用,以及物質間相互作用關系的科學。作為一門極其重要的基礎學科,化學與人類的衣食住行以及能源、信息、材料、國防、環境、醫藥等方面都有密切聯系,在社會與經濟發展以及人類生活質量的不斷

    姚建年院士:中國化學給世界帶來諸多驚喜

           國家自然科學基金委員會副主任 中國化學會理事長 中國科學院院士 姚建年  改革開放30年來,與國內各行各業一樣,我國的化學科學研究獲得了全方位發展,步入了高速發展時期,無論在基礎、應用基礎研究還是成果轉化、實現產業化

    第十屆中科院杰出青年終評推薦人選公示

      根據《關于評選第十屆“中國科學院杰出青年”的通知》(科發京黨字〔2009〕128號)文件規定,第十屆中國科學院杰出青年評選程序性評審工作已于2010年1月11日進行,評選領導小組辦公室按照有關文件要求及評選程序邀請相關人員對上報材料進行了認真的審閱,并選出了30位候選人進入最終的評選。   現

    2019年中國學者發表CNS統計,誰是CNS發表之王?

      物理與材料學領域  【1】2019年12月11日,中科院物理所張余洋、丁洪及高鴻鈞共同通訊在Science 在線發表題為“Nearly quantized conductance plateau of vortex zero mode in an iron-based superconducto

    中科院科研進展2017

      Ce基非晶合金的形成機理研究進展  非晶形成的機理以及熱力學、動力學和結構對非晶形成能力的影響是材料科學的重要問題之一,目前也是非晶材料和物理領域研究的重點方向之一。物理所汪衛華小組與美國North Carolina大學Wu Yue研究小組合作,采用核磁共振NMR 27Al 方法系統研究了微量元

    中國科大碳納米纖維組裝體的宏量制備及應用研究獲進展

      近年來,中國科學技術大學俞書宏教授領導的研究小組圍繞如何利用一維結構為構筑單元實現組裝制備宏觀塊體材料及如何實現將這些宏觀組裝體功能化以獲得實際應用等科學問題,開展了一系列富有創新的探索研究,在碳納米纖維及組裝體的宏量制備和實際應用方面取得一系列突破性進展。   最近,本課題組在他們以往宏量制

    科技部“十二五”現代生物制造科技發展專項規劃發布

    關于印發十二五現代生物制造科技發展專項規劃的通知國科發計〔2011〕587號  各省、自治區、直轄市、計劃單列市科技廳(委、局),新疆生產建設兵團科技局,國務院有關部門科技主管單位,各有關單位:  為了貫徹落實《國家中長期科學和技術發展規劃綱要(2006-2020年)》,指導現代生物制造科技發展,加

    2016全球最受公眾關注的科學成果

      中國科學院科技戰略咨詢研究院戰略情報研究所研制的“2016全球最受公眾關注的科學成果”,通過計量統計遴選出天文學與天體物理[1]、物理學、化學、地球科學、生命科學這五個學科中受到科技界熱切關注的科學成果,及中國研究者參與的每個學科TOP30受公眾關注的科學成果,為科技工作者把握最新的科學研究熱點

    盤點2014年度十大改變世界的革命性技術

      基因編輯更快更準更簡單  1973年,斯坦利?N?科恩(Stanley N. Cohen)和赫伯特?W?博耶(Herbert W. Boyer)找到了改變生物體基因組的方法,成功將蛙的DNA插入到細菌中。20世紀70年代末,博耶的基因泰克(Genetech)公司對大腸桿菌進行基因改造,使其帶有一

    第385次香山科學會議聚焦自組裝本質規律研究

      自組裝是超分子科學最關鍵的問題之一。自組裝是組裝基元通過分子間相互作用自發地形成有序結構的過程,是創造新物質和產生新功能的重要手段。   出席日前在京舉行的以“功能超分子體系:多層次的分子組裝體”為主題的第385次香山科學會議的中外專家指出,揭示自組裝的本質和規律是當前自組裝研究的迫切需求;盡

    2019年中國學者86篇Cell,Nature及Science文章匯總

      2019年上半年很快就結束了,iNature盤點了中國學者在Cell,Nature及Science發表的成果,我們發現總共有86篇(截至2019年6月24日),具體介紹如下:  4-6月發表的文章  【1】2019年6月21日,西北工業大學王文,中科院昆明動物研究所/BGI 張國捷及丹麥哥本哈根

    2016年度中國化學會青年化學獎公布

       關于2016年度中國化學會青年化學獎的授獎決定  根據《中國化學會青年化學獎條例》,經中國化學會獎勵工作委員會決議,授予以下10位優秀青年化學工作者“2016年度中國化學會青年化學獎”(按姓名拼音排序):  陳昶樂 男 中國科學技術大學  程群峰 男 北京航空航天大學  藍宇 男 重慶大學  

    10人入選!2018年度中國化學會青年化學獎人出爐

      根據《中國化學會青年化學獎條例》,經中國化學會獎勵工作委員會決議,授予清華大學陳晨等10位優秀青年化學工作者“2018年度中國化學會青年化學獎”。中國化學會向各位獲獎者及其單位表示衷心的祝賀!圖片來源于網絡  2018年度中國化學會青年化學獎授獎名單  (按姓名拼音排序)  陳 晨 男 清華大學

    面向平面化微型電池和微型超級電容器:從二維到三維

      近日,中國科學院大連化學物理研究所研究員吳忠帥和中科院院士包信和在微型儲能器件方面的研究工作受到國際同行的廣泛關注,應邀在《先進材料》(Advanced Materials)上發表題為《面向平面化微型電池和微型超級電容器的道路:從二維到三維的器件構型》(The Road Towards Plan

    2017太赫茲科技發展回顧與展望

    隨著2018年的即將到來,2017已離我們越來越遠。回顧發展歷程,總結經驗啟示,瞻望美好未來,謀劃創新思路,是對來年的提前布局、未雨綢繆,也是對來年太赫茲科技帶給我們更多驚喜和突破、迎來更為廣闊發展前景的期待。回首2017,太赫茲科學研究取得了哪些重要進展?太赫茲產業應用取得了哪些重要突破?展望20

    2018年度領軍人才和科技新星入選名單公布

      9月21日  北京市科委正式對外發布了2018年度  首都科技領軍人才培養工程  和北京市科技新星計劃  入選人員名單  領軍人才工程  領軍人才工程是《首都中長期人才發展規劃綱要(2010-2020)年》確定的十二項重點人才工程之一,是針對50周歲以下的中青年科技帶頭人,突出對領軍人才自身發展

    國內首臺超快掃描隧道顯微鏡問世 實現飛秒級時間分辨

      近日,北京大學物理學院量子材料科學中心江穎教授團隊及其合作者研制出國內首臺超快掃描隧道顯微鏡(Scanning Tunneling Microscope,STM),實現了飛秒級時間分辨和原子級空間分辨,并捕捉到金屬氧化物表面單個極化子的非平衡動力學行為,該工作于5月19日發表在物理領域頂級期刊《

    吳玉清:解析本質科學問題 光譜未來發展動力無限

    “七彩光譜 萬象更新”主題系列訪吉林大學吳玉清教授  光譜技術已邁過百年歷史長河,中國的光譜分析技術亦可追溯到上個世紀50年代,今日中國的光譜技術已從國際上“跟跑”躍升到部分領域領跑的地位。在這背后,國內老中青幾代科學家克服了嚴峻的挑戰、也付出了辛勤的汗水。伴隨著將在成都召開的第21屆全國分子光譜學

    2016年度中國科學十大進展發布!

      鈷/氧化鈷雜化二維超薄結構電催化還原CO2為液體燃料01  1、研制出將二氧化碳高效清潔轉化為液體燃料的新型鈷基電催化劑  將二氧化碳在常溫常壓下電還原為碳氫燃料,是一種潛在的替代化石原料的清潔能源策略,并有助于降低二氧化碳排放對氣候造成的不利影響。實現二氧化碳電催化還原的關鍵瓶頸問題是將二氧化

    Nature Materials連發2篇論文:MOFs在工業氣體分離最新進展

      MOFs基于其獨特的孔道結構和豐富的金屬-配位化學可調性質,在分離、催化、能源、器件等諸多領域表現出誘人的前景。2020年2月4日當天,Nature Materials連續發表2篇研究論文,分別介紹了MOFs在工業氣體分離和能源器件中的最新進展。  值得一提的是,在此之前不久,MOFs已經陸續發

    追隨諾貝爾足跡——2017年北京市電子顯微學年會在京召開

      2017年度北京市電子顯微學年會在北京天文館召開。  分析測試百科網訊2017年12月19日,2017年度北京市電子顯微學年會在北京天文館召開,本次會議年會由北京市電鏡學會、北京理化分析測試技術學會主辦,旨在推動北京及周邊地區廣大電子顯微學的學術及技術水平,促進電子顯微學工作者在材料科學,生命科

    蘇州納米所發表碳納米管纖維研究綜述

      碳納米管是一種潛力巨大的超級材料,是構建未來超強結構和碳基半導體器件的理想核心基礎材料。將碳納米管組裝成宏觀體(如纖維、薄膜和泡沫等)是實現碳納米管宏量應用的重要途徑之一。碳納米管纖維是碳納米管的一維連續組裝體,其不僅可以單獨使用,而且可以通過編織形成二維薄膜或者三維編織結構,成為最受關注的碳納

    新技術,真應用——第10次華北五省電鏡研討會的饕餮盛宴

      分析測試百科網訊 2018年7月22日,第十次華北五省市電子顯微學研討會及2018年全國實驗室協作服務交流會在山東省煙臺市舉行。本次會議由華北五省電子顯微鏡學會主辦,北京理化分析測試技術學會協辦。此次會議旨在推動華北五省市電子顯微分析技術的發展,促進電子顯微分析工作者的學術交流,加強實驗室資源共

    中科院發布改革開放四十年40項標志性重大科技成果

      12月19日,中國科學院發布改革開放四十年40項標志性重大科技成果。  中科院以“三個面向”為線索,在系統梳理改革開放40年來廣大科研人員取得的眾多重大科技成果基礎上,發布面向世界科技前沿成果15項、面向國家重大需求成果15項、面向國民經濟主戰場成果10項。  習近平總書記在慶祝改革開放40周年

    環境修復領域的大牛們近年來做了哪些貢獻?

      隨著化工,醫藥,農藥等工業的迅速發展,工業廢水中有害污染物的種類和數量迅猛增加。傳統生物處理技術難以使含有有毒有機污染物的工業廢水達到排放,對環境以及人體健康都構成了嚴重的威脅,因此環境修復迫在眉睫。國內外的科學家們一直在環境修復研究中不斷尋求突破。以下盤點在環境修復中國內外的大牛們的研究進展。

    自行設計研制 科學出奇制勝

    自行設計研制 科學出奇制勝——中科院科學儀器研制悄然潛行 中國儀器儀表問題系列報道(之七) 重大突破來自技術的創新 最近幾年,越來越多的中國科學家應邀在國際會議上作特邀報告或為專業核心刊物撰寫綜述文章。這樣的“殊遇”與“殊榮”雖然離諾貝爾獎還有某種程度的距離,但對于科學家而言,無疑已得

    新疆理化所等發表苝二酰亞胺超分子自組裝技術綜述文章

      10月6日,國際綜述性期刊Chemical Reviews 在線發表了由中國科學院新疆理化技術研究所環境科學與技術研究室研究員王傳義團隊和美國猶他大學教授臧泠團隊撰寫的題為Self-Assembly of Perylene Imide Molecules into 1D Nanostructur

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频