《細胞》出版社(Cell Press)接到匿名舉報,聲稱西班牙巴塞羅那基因調控中心(Centre for Genomic Regulation)Maria Pia Cosma教授發表的三篇《細胞》系列論文數據造假。隨后,《細胞》出版社展開一系列調查。 3月份,有網友在Pubpeer上指控Maria Pia Cosma發表在《細胞》旗下的三個雜志《細胞》(Cell),《分子細胞》(Molecular Cell ),《分子與細胞生物學》(Molecular and Cellular Biology)上的三篇文章中關于蛋白印跡和染色質免疫沉淀的數據出現重復利用,隨后便引起網友激烈討論。 澳大利亞墨爾本Walter—Eliza Hall 醫學研究所細胞生物學家David Vaux稱,通過仔細研究這三篇文章中的數據,他個人認為文章中數據有太大相似的地方,但不排除編輯原始數據時出現問題的可能。 論文的第二作者,英國牛津大學Kim ......閱讀全文
一. 流式細胞術概述 流式細胞術(Flow Cytometry, FCM)是七十年代發展起來的高科學技術,它集計算機技術、激光技術、流體力學、細胞化學、細胞免疫學于一體, 同時具有分析和分選細胞功能。它不僅可測量細胞大小、內部顆粒的性狀,還可檢測細胞表面和細胞漿抗原、細胞內DNA、RN
信號檢測系統 當測定標本在鞘流液約束下細胞成單行排列依次通過激光檢測區時產生散射光和熒光信號,散射光分為前向角散射(Forward Scatter, FS)和側向角散射或900散射(Side Scatter, SS),散射光是細胞的物理參數與細胞樣本的制備(如
發起建立細胞治療多中心臨床注冊登記—第七屆細胞治療國際研討會 行業年度盛會—第七屆細胞治療國際研討會將于6月17-18日在武漢歐亞國際會展中心召開。 近段時間,細胞免疫治療遭遇行業規范發展的危機,受到媒體和社會的高度關注,市場混亂和監管不規范是最重要的因素,細胞的制備標準和治療技術的規范化成
高通量單細胞組學數據的一個顯著性特點就是數據量大,一次能反映的細胞數量多。因此,通過降維和可視化去展示細胞數據特征是一個非常重要的工作。翻開各類發表的單細胞組學文章,不管是CNS的還是其他,幾乎所有的結果中,映入眼簾的第一張圖片通常是數據結果的降維圖形化展示。 圖1 PBMC細胞單細胞轉
高通量單細胞組學數據的一個顯著性特點就是數據量大,一次能反映的細胞數量多。因此,通過降維和可視化去展示細胞數據特征是一個非常重要的工作。翻開各類發表的單細胞組學文章,不管是CNS的還是其他,幾乎所有的結果中,映入眼簾的第一張圖片通常是數據結果的降維圖形化展示。 圖1 PBMC細胞單細胞轉錄
高通量單細胞組學數據的一個顯著性特點就是數據量大,一次能反映的細胞數量多。因此,通過降維和可視化去展示細胞數據特征是一個非常重要的工作。翻開各類發表的單細胞組學文章,不管是CNS的還是其他,幾乎所有的結果中,映入眼簾的第一張圖片通常是數據結果的降維圖形化展示。圖1 PBMC細胞單細胞轉錄
4月24日消息,據史密森學會網站報道,大部分人都聽說過人類基因組計劃,這是當年的一項跨國跨學科的科學探索工程,并在2001年發布了人類基因組精細圖譜及初步分析結果。而人類細胞圖譜計劃(Human Cell Atlas)同樣是一項規模宏大的國際合作項目。目前進展如何了? 人類細胞圖譜計劃涵蓋了1
核酸插入染料溴化乙錠(EtBr) 和碘化丙啶(PI)能夠結合到DNA雙螺旋的大溝。4,6-二脒基-2-苯基吲哚(DAPI)和Hoechst染料(有幾種常用的)則結合小溝。請注意, 一些染料 (例如碘化丙啶)也會結合到RNA發卡結構形成的溝中,因此如果要做DNA定量,需要用染料和RNA
《Nature Methods》是專門用來對生命科學研究領域具有顯著性意義的新方法和研究技術改進的經典雜志。單細胞轉錄組測序是2019年不折不扣的熱點領域,截至2019年9月,Nature Methods總共發表了10篇關于單細胞轉錄組測序相關的研究報道。本期,小編和大家一起分享這些重要的研究成
《Nature Methods》是專門用來對生命科學研究領域具有顯著性意義的新方法和研究技術改進的經典雜志。單細胞轉錄組測序是2019年不折不扣的熱點領域,截至2019年9月,Nature Methods總共發表了10篇關于單細胞轉錄組測序相關的研究報道。本期,小編和大家一起分享這些重要的研究成
肝臟是人體最大、功能最多的器官之一,在人體的新陳代謝及免疫過程中發揮著關鍵作用。更值得關注的是,肝臟還是人體唯一一種僅需原體積的25%,就能夠完全再生的內臟器官。另外,包括脂肪肝、肝癌及肝炎在內的各類肝病是當今世界最大的健康問題之一,也是導致死亡的主要原因。 盡管肝臟對人類健康極為重要,但健康
肝臟是人體最大、功能最多的器官之一,在人體的新陳代謝及免疫過程中發揮著關鍵作用。更值得關注的是,肝臟還是人體唯一一種僅需原體積的25%,就能夠完全再生的內臟器官。另外,包括脂肪肝、肝癌及肝炎在內的各類肝病是當今世界最大的健康問題之一,也是導致死亡的主要原因。 盡管肝臟對人類健康極為重要,但健康
肝臟是人體最大、功能最廣泛的器官之一。它將我們食物中的糖、蛋白和脂肪轉化為對身體有用的物質,并將它們釋放到細胞中。肝臟除了在人體新陳代謝中發揮作用外,還是一種免疫器官,對血液的排毒是必不可少的。最引人注目的是,當僅為原始質量的25%時,肝臟是唯一能夠恢復到原來大小的內臟器官。 肝病是世界上最大
單細胞轉錄組研究是近期生命科學領域運用最火的組學檢測技術之一,來自麻省總醫院和哈佛醫學院的研究人員在《Molecular Cell》(Suva and Tirosh 2019)上討論了單細胞轉錄組測序技術在腫瘤研究中的經驗與未來挑戰。在此,我們對該review中的部分內容進行解讀和分享。
單細胞轉錄組研究是近期生命科學領域運用最火的組學檢測技術之一,來自麻省總醫院和哈佛醫學院的研究人員在《Molecular Cell》(Suva and Tirosh 2019)上討論了單細胞轉錄組測序技術在腫瘤研究中的經驗與未來挑戰。在此,我們對該review中的部分內容進行解讀和分享。
Data Driven Research: 組織細胞群體的深度解析——神奇的質譜流式技術質譜流式是單細胞分析技術的一大突破,目前應用于血液、免疫、干細胞以及腫瘤等諸多研究領域。它創造性地使用了金屬元素做為抗體的標簽,利用ICP質譜實現了單細胞多參數的檢測。金屬標簽具有極低的背景信號以及很好的標簽化學
接觸過單細胞轉錄組數據的小伙伴們都知道,數據的核心結果在于根據每個細胞的基因表達數據,來對細胞進行分群分類。現有通用的分析思路如下:首先根據轉錄組稀疏矩陣,通過計算和分析,找到不同的細胞Cluster,并找到每一類集群的Marker基因。根據已有對細胞特定Marker基因的認識,來對細胞可能的集
接觸過單細胞轉錄組數據的小伙伴們都知道,數據的核心結果在于根據每個細胞的基因表達數據,來對細胞進行分群分類。現有通用的分析思路如下:首先根據轉錄組稀疏矩陣,通過計算和分析,找到不同的細胞Cluster,并找到每一類集群的Marker基因。根據已有對細胞特定Marker基因的認識,來對細胞可能的集
接觸過單細胞轉錄組數據的小伙伴們都知道,數據的核心結果在于根據每個細胞的基因表達數據,來對細胞進行分群分類。現有通用的分析思路如下:首先根據轉錄組稀疏矩陣,通過計算和分析,找到不同的細胞Cluster,并找到每一類集群的Marker基因。根據已有對細胞特定Marker基因的認識,來對細胞可能的集群進
單細胞檢測技術的發展為我們理解復雜生命體中細胞的組成與各自功能及變化過程提供了強有力的工具。基于單細胞基因表達譜數據,我們可以窺探發育過程中細胞內的調控變化,發現腫瘤微環境中的各類細胞及它們的細胞間交流,理解器官組織中復雜多樣的細胞類型。現有單細胞研究是一個從整體到個體,再由個體特征重建整體的過
單細胞檢測技術的發展為我們理解復雜生命體中細胞的組成與各自功能及變化過程提供了強有力的工具。基于單細胞基因表達譜數據,我們可以窺探發育過程中細胞內的調控變化,發現腫瘤微環境中的各類細胞及它們的細胞間交流,理解器官組織中復雜多樣的細胞類型。現有單細胞研究是一個從整體到個體,再由個體特征重建整體的過
[導讀]在微軟聯合創始人保羅·艾倫的資助下創立的艾倫細胞科學研究所(Allen Institute for Cell Science)最近公布了一項研究成果,利用卷積神經網絡(CNN)等 AI 算法學習現有的 2D 及 3D 細胞影像資料…… 細胞生物學家和細胞學研究者現在有了新的細胞模型
基于單細胞轉錄組數據的細胞軌跡分析常見形式有細胞變化軌跡分析和細胞譜系分析,在上一篇中,我們詳細介紹了常規擬時間序列分析的相關內容(具體內容查看鏈接)。在這里,我們主要就細胞譜系分析進行介紹和解讀。 細胞譜系分析,最簡明的理解就是細胞領域的進化樹,通常指的是某類祖源細胞,在特定條件下,有多
基于單細胞轉錄組數據的細胞軌跡分析常見形式有細胞變化軌跡分析和細胞譜系分析,在上一篇中,我們詳細介紹了常規擬時間序列分析的相關內容(具體內容查看鏈接)。在這里,我們主要就細胞譜系分析進行介紹和解讀。 細胞譜系分析,最簡明的理解就是細胞領域的進化樹,通常指的是某類祖源細胞,在特定條件下,有多
單細胞檢測技術的發展為我們理解復雜生命體中細胞的組成與各自功能及變化過程提供了強有力的工具。基于單細胞基因表達譜數據,我們可以窺探發育過程中細胞內的調控變化,發現腫瘤微環境中的各類細胞及它們的細胞間交流,理解器官組織中復雜多樣的細胞類型。現有單細胞研究是一個從整體到個體,再由個體特征重建整體的過程。
近年來,深度學習等人工智能技術在圖像識別,自然語言處理等領域取得了令人矚目的成就。人工智能技術應用于生命科學,對生物信息多個領域產生了重大的影響。深度學習算法借助于生命科學大數據的飛速發展,從海量大數據中自動高效地提取特征進行學習,極大超越了依賴人工提取特征的傳統人工智能算法,在醫療圖像處理、結
仍面臨挑戰的體外培養新技術有望替代現有的、用于藥物測試的模型動物,具有紀念意義的是,日前政府擁有的360只黑猩猩正式從藥物測試中退役,研究人員相信體外新技術將來可應用于藥物測試和生理生化研究。 更靈敏的體外技術新平臺被開發出并應用于研究人體藥物代謝,從而讓動物從藥物試驗中解放出來。動物保護
基于單細胞轉錄組數據的細胞軌跡分析常見形式有細胞變化軌跡分析和細胞譜系分析,在上一篇中,我們詳細介紹了常規擬時間序列分析的相關內容(具體內容查看鏈接)。在這里,我們主要就細胞譜系分析進行介紹和解讀。細胞譜系分析,最簡明的理解就是細胞領域的進化樹,通常指的是某類祖源細胞,在特定條件下,有多個發育軌跡和
1 流式細胞儀的概念及其發展歷史1.1 流式細胞儀的基本概念 流式細胞儀(flow cytonletry,FCM)是對高速直線流動的細胞或生物微粒進行快速定量測定和分析的儀器,主要包括樣品的液流技術、細胞的計數和分選技術,計算機對數據的采集和分析技術等。流式細胞儀以流式細胞術為理論基礎,是流體力學、
過去二十年來,醫學科學取得了巨大的進步。在醫學領域的飛速發展過程中,科學技術的進步發揮著重要的作用。其中3D細胞培養技術就是過去十年里一項越來越受歡迎的技術。 在過去十年中,業界的重點已經逐漸轉向發現和開發新藥。科學家和研究人員們越來越多地開始利用體外技術——從基于生化實驗轉移到基于細胞的研究