<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 周興江:跨越世界光電子能譜儀的“巔峰”

    跨越世界光電子能譜儀的“巔峰”——訪周興江研究員 “也許在不久的將來,借助真空紫外激光角分辨光電子能譜儀,高溫超導電性產生的機理將被揭示,高溫超導體所表現出的許多奇異的物理性質將得到解釋。” 2007年的元旦剛過不久,作為“真空紫外激光角分辨光電子能譜儀”研究項目的負責人,中科院物理研究所周興江研究員在接受本網工作人員專訪時做出如上的表述。 國際首創的“火眼金睛” 2006年12月28日,由中科院物理研究所和理化技術研究所聯合研制的真空紫外激光角分辨光電子能譜儀通過了中科院主持的鑒定。由龔昌德院士擔任組長,包括于淥院士、甘子釗院士、夏建白院士等參加的鑒定組給予了該項目高度的評價,“真空紫外激光角分辨光電子能譜儀的主要性能和技術指標在國際上處于領先地位:它具有超高的分辨率、超高的光束流量,具備了研究 體效應的可能性。” 為什么專家鑒定組特別要強調這一系統在‘體效應’研究方面的優勢呢?周興江研究員深入淺出地為......閱讀全文

    紫外光電子能譜與紫外吸收光譜的區別

    紫外光電子能譜的入射輻射屬于真空紫外能量范圍,擊出的是原子或分子的價電子,可以在高分辨率水平上探測價電子的能量分布,進行電子結構的研究.而紫外吸收光譜則是將不同波長的紫外線照射化合物,看那些波段的紫外光被吸收,被吸收了多少.所以兩者的原理其實是不一樣的.

    紫外光電子能譜的介紹

    紫外光電子能譜UPS(Ultroviolet Photoelectron Spectrometer)以紫外線為激發光源的光電子能譜。激發源的光子能量較低,該光子產生于激發原子或離子的退激,最常用的低能光子源為氦Ⅰ和氦Ⅱ。紫外光電子能譜主要用于考察氣相原子、分子以及吸附分子的價電子結構。

    紫外光電子能譜的原理

    紫外光電子譜的基本原理是光電效應(如圖1)。它是利用能量在16-41eV的真空紫外光子照射被測樣品,測量由此引起的光電子能量分布的一種譜學方法。忽略分子、離子的平動與轉動能,紫外光激發的光電子能量滿足如下公式:hν=Eb+Ek+Er,其中Eb電子結合能,Ek電子動能,Er原子的反沖能量。

    紫外光電子能譜法的簡介

    中文名稱紫外光電子能譜法英文名稱ultraviolet photoelectron spectroscopy定  義用紫外光激發試樣的光電子能譜法。應用學科機械工程(一級學科),分析儀器(二級學科),能譜和射線分析儀器-能譜和射線分析儀器分析原理(三級學科)

    關于紫外光電子能譜的簡介

      紫外光電子能譜UPS(ultraviolet photo-electron spectroscopy)以紫外線為激發光源的光電子能譜。激發源的光子能量較低,該光子產生于激發原子或離子的退激,最常用的低能光子源為氦Ⅰ和氦Ⅱ。紫外光電子能譜主要用于考察氣相原子、分子以及吸附分子的價電子結構。

    紫外光電子能譜儀的簡介

    中文名稱紫外光電子能譜儀英文名稱ultraviolet photoelectron spectrometer定  義用紫外光激發試樣光電子的能譜儀。適用于表面狀態分析,能獲得能帶結構,振蕩能級信息。應用學科機械工程(一級學科),分析儀器(二級學科),能譜和射線分析儀器-能譜和射線分析儀器儀器和附件(

    紫外光電子能譜學

    紫外光電子能譜學(UltravioletPhotoelectronSpectroscopy,UPS)是指通過測量紫外光照射樣品分子時所激發的光電子的能量分布,來確定分子能級的有關信息的譜學方法。

    關于紫外光電子能譜的背景介紹

      紫外光電子譜的基本原理是光電效應,它被廣泛地用來研究氣體樣品的價電子和精細結構以及固體樣品表面的原子、電子結構。  入射電磁波從物質中擊出的光電子產生的譜稱為能譜。光電子能譜學(PES) 是二十世紀六十年代隨著超高真空技術和電子學技術的發展而迅速發展起來的一支譜學新技術。它是對從樣品中擊出的光電

    簡述紫外光電子能譜的真空系統

      光電子能譜要研究的是微觀的內容,任何微小的東西都會對它產生很大影響,因此光源、樣品室、電子能量分析器、檢測器都必須在高真空條件下工作,且真空度應在10-3 Pa 以下。電子能譜儀的真空系統有兩個基本功能,其一,使樣品室和分析器保持一定的真空度,以便使樣品發射出來的電子的平均自由程相對于譜儀的內部

    關于紫外光電子能譜的應用介紹

      電子能譜目前主要應用于催化、金屬腐蝕、粘合、電極過程和半導體材料與器件等這樣一些極有應用價值的領域,探索固體表面的組成、形貌、結構、化學狀態、電子結構和表面鍵合等信息。隨著時間的推移,電子能譜的應用范圍和程度將會越來越廣泛,越來越深入。  由于紫外光電子能譜的光源能量較低,線寬較窄(約為0.01

    關于紫外光電子能譜的紫外光源和電子能量分析器介紹

      紫外光電子能譜儀包括以下幾個主要部分:單色紫外光源(hν = 21.2 1eV)、電子能量分析器、真空系統、濺射離子槍源或電子源、樣品室、信息放大、記錄和數據處理系統。  1、紫外光源  紫外光電子能譜的激發源常用稀有氣體的共振線如He I、He II。它的單色性好,分辨率高。可用于分析樣品外殼

    簡述紫外光電子能譜的基本原理

      紫外光電子能譜UPS(ultraviolet photo-electron spectroscopy)以紫外線為激發光源的光電子能譜。紫外光電子譜的基本原理是光電效應。它是利用能量在16-41eV的真空紫外光子照射被測樣品,測量由此引起的光電子能量分布的一種譜學方法。  忽略分子、離子的平動與轉

    紅外光譜-紫外光譜-質譜-NMR-區別

    紅外光譜--因為不同化學鍵的振動不同,所以可根據紅外光譜確定分子中的特定的化學鍵,如C=O鍵等。紫外光譜--主要是確定有機物中是否存在雙鍵,或共軛體系。其本質是電子在派軌道上的躍遷,對應的能量在紫外光譜上的位置。質譜--將有機物打成碎片陽離子,測它的質荷比,即質量和帶電荷之比,來確定碎片的組成,從而

    紫外可見吸收光譜的紫外光譜

    各種因素對吸收譜帶的影響表現為譜帶位移、譜帶強度的變化、譜帶精細結構的出現或消失等。譜帶位移包括藍移(或紫移,hypsochromic shift or blue shift))和紅移(bathochromic shift or red shift)。藍移(或紫移)指吸收峰向短波長移動,紅移指吸收峰

    紫外光譜原理

    在紫外光譜中,波長單位用nm(納米)表示。紫外光的波長范圍是10~380 nm,它分為兩個區段。波長在10~200 nm稱為遠紫外區,這種波長能夠被空氣中的氮、氧、二氧化碳和水所吸收,因此只能在真空中進行研究工作,故這個區域的吸收光譜稱真空紫外,由于技術要求很高,目前在有機化學中用途不大。波長在20

    紫外光譜原理

    在紫外光譜中,波長單位用nm(納米)表示。紫外光的波長范圍是10~380 nm,它分為兩個區段。波長在10~200 nm稱為遠紫外區,這種波長能夠被空氣中的氮、氧、二氧化碳和水所吸收,因此只能在真空中進行研究工作,故這個區域的吸收光譜稱真空紫外,由于技術要求很高,目前在有機化學中用途不大。波長在20

    紫外光譜原理

    紫外可見吸收光譜產生的原理紫外可見吸收光譜是由于分子(或離子)吸收紫外或者可見光(通常200-800 nm)后發生價電子的躍遷所引起的。由于電子間能級躍遷的同時總是伴隨著振動和轉動能級間的躍遷,因此紫外可見光譜呈現寬譜帶。紫外可見吸收光譜的橫坐標為波長(nm),縱坐標為吸光度。紫外可見吸收光譜有兩個

    紫外光譜的光譜圖

    右圖是乙酸苯酯的紫外光譜圖。紫外光譜圖提供兩個重要的數據:吸收峰的位置和吸收光譜的吸收強度。從圖中可以看出,化合物對電磁輻射的吸收性質是通過一條吸收曲線來描述的。圖中以波長(單位nm)為橫坐標,它指示了吸收峰的位置在260 nm處。縱坐標指示了該吸收峰的吸收強度,吸光度為0.8。吸收光譜的吸收強度是

    紫外光譜的原理

    紫外光譜是一種常用的分析技術,利用紫外光在樣品中的吸收特性,來鑒定和分析樣品的成分和結構。在紫外光譜儀中,樣品受到特定波長的紫外線照射后,會吸收部分紫外光,使得出射光譜中出現吸收峰。這些吸收峰的大小和位置與樣品的成分和結構有關,通過紫外光譜的原理對比標準光譜或者實驗得到的光譜,可以確定樣品的成分和結

    什么是紫外光譜

    配合物組成及其穩定常數的測定 定量分析結構分析定性分析應用范圍定義紫外光譜是分子中某些價電子吸收了一定波長的電磁波,由低能級躍近到高能級而產生的一種光譜,也稱之為電子光譜.。當分子中的電子吸收能量后會從基態躍遷到激發態,然后放出能量(輻射出特征譜線)。回到基態 而輻射出特征普線的波長在紫外區中就叫做

    紫外光譜是什么

    紫外光譜是是帶狀光譜。在紫外光譜中,波長單位用nm(納米)表示。紫外光的波長范圍是10~380 nm,它分為兩個區段。波長在10~200 nm稱為遠紫外區,這種波長能夠被空氣中的氮、氧、二氧化碳和水所吸收,因此只能在真空中進行研究工作,故這個區域的吸收光譜稱真空紫外。

    紫外可見漫反射光譜數據怎么轉化為紫外可見吸收光譜

    如果你的樣品,沒有透射的話,那么直接用 1-R 去計算吸收就可以了

    俄歇電子能譜

    俄歇電子能譜(Auger electron spectroscopy,簡稱AES),是一種表面科學和材料科學的分析技術。因此技術主要借由俄歇效應進行分析而命名之。這種效應系產生于受激發的原子的外層電子跳至低能階所放出的能量被其他外層電子吸收而使后者逃脫離開原子,這一連串事件稱為俄歇效應,而逃脫出來的

    電子能譜儀概述

      電子能譜儀:對固體表面進行微區成份分析及元素分布。可應用于半導體材料、冶金、地質等部門。X光光電子能譜儀:對固體進行化學結構測定、元素分析、價態分析。可應用于催化、高分子、腐蝕冶金、半導體材料等部門。  電子能譜儀是利用光電效應測出光電子的動能及其數量的關系,由此來判斷樣品表面各種元素含量的儀器

    俄歇電子能譜

    俄歇電子能譜簡稱AES,是一種表面科學和材料科學的分析技術。因此技術主要借由俄歇效應進行分析而命名之。這種效應系產生于受激發的原子的外層電子跳至低能階所放出的能量被其他外層電子吸收而使后者逃脫離開原子,這一連串事件稱為俄歇效應,而逃脫出來的電子稱為俄歇電子。1953年,俄歇電子能譜逐漸開始被實際應用

    紫外光譜儀原理

      紫外分光光譜UV  分析原理:吸收紫外光能量,引起分子中電子能級的躍遷  譜圖的表示方法:相對吸收光能量隨吸收光波長的變化  提供的信息:吸收峰的位置、強度和形狀,提供分子中不同電子結構的信息  物質分子吸收一定的波長的紫外光時,分子中的價電子從低能級躍遷到高能級而產生的吸收光譜較紫外光譜。紫光

    紫外光譜儀概述

      紫外/可見光譜儀,是利用紫外可見光譜法工作的儀器。普通紫外可見光譜儀,主要由光源、單色器、樣品池(吸光池)、檢測器、記錄裝置組成。紫外/可見光譜儀設計一般都盡量避免在光路中使用透鏡,主要使用反射鏡,以防止由儀器帶來的吸收誤差。當光路中不能避免使用透明元件時,應選擇對紫外/可見光均透明的材料(如樣

    紫外吸收光譜的原理

      紫外吸收光譜和可見吸收光譜都屬于分子光譜,它們都是由于價電子的躍遷而產生的。利用物質的分子或離子對紫外和可見光的吸收所產生的紫外可見光譜及吸收程度可以對物質的組成、含量和結構進行分析、測定、推斷。  在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能

    紫外吸收光譜的產生

    紫外吸收光譜的產生同核雙原子分子的分子軌道能級圖吸光物質分子吸收特定能量(波長)的電磁波(紫外光)產生分子的電子能級躍遷。

    紫外光譜的波長范圍

    紫外光譜的波長范圍是400nm以下。可見光是電磁波譜中人眼可以感知的部分,可見光譜沒有精確的范圍;一般人的眼睛可以感知的電磁波的波長在400~760nm之間,但還有一些人能夠感知到波長大約在380~780nm之間的電磁波。紫外光是電磁波譜中波長從0.01~0.40微米輻射的總稱,不能引起人們的視覺。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频