近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室太陽能研究部研究員、中科院院士李燦和研究員章福祥、陳閃山等與日本東京大學教授Kazunari Domen課題組合作,在可見光驅動光催化Z機制完全分解水制氫研究中取得進展。研究結果發現,經一步氮化合成的MgTa2O6?xNy/TaON異質結材料(最長可吸收波長達570 nm)可有效促進光生電荷分離,基于此異質結材料構筑的寬光譜響應Z機制完全分解水制氫體系,其表觀量子效率達到目前文獻報道最高值(AQE: 6.8%@420 nm)。相關結果在線發表在《德國應用化學》期刊上。 光催化分解水制氫是從根本上解決能源危機和環境污染的理想途徑之一,而寬光譜響應半導體材料的開發與應用是實現太陽能高效光化學轉化的前提和基礎。近年來,李燦團隊致力于新型寬光譜響應半導體材料的開發,通過對系列層狀或隧道狀寬禁帶半導體材料進行摻氮處理,實現了有效的寬光譜吸收和利用,并從實驗上......閱讀全文
近年來,中科院大連化學物理研究所李燦院士領導的催化基礎國家重點實驗室分子催化與原位表征研究組及潔凈能源國家實驗室太陽能部研究團隊在基于“結”與“助催化劑”構建光催化體系方面的系列研究工作受到了國際同行的廣泛關注。近日,該團隊受邀撰寫的綜述文章Roles of Cocatalysts in P
氫能已被普遍認為是一種理想、無污染的綠色能源,其燃燒值高且燃燒后唯一的產物是水,對環境不會造成任何污染,因此,氫能開發是解決能源危機和環境問題的理想途徑。在眾多氫能開發的手段和途徑中,通過光催化劑,利用太陽能光催化分解水制氫是最為理想和最有前途的手段之一;而開發高效、廉價的實用光催化劑是實現
近日,中國科學院院士、中國科學院大連化學物理研究所研究員李燦團隊在《德國應用化學》發表的一項成果,吸引了國內外業界的廣泛關注。他們提出并驗證了一種新的太陽能分解水規模化制氫策略——“氫農場”策略,并創造了太陽能光催化分解水制氫效率的新紀錄。 “氫農場”策略類似于農場種莊稼,即春天大面積播種后
因為世界范圍的能源和環境問題,近年來利用太陽能光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是化學科學領域“圣杯”式的難題,一旦取得突破,有望影響世界能源格局。 中國科學院院士李燦領導的中科院大連化學物理研究所潔凈能源國家實驗室太陽能部研究團隊長期從事人工光
中科院大連化物所提出“氫農場”新策略 近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室院士李燦、研究員李仁貴等在太陽能可規模化分解水制氫方面取得新進展,率先提出并驗證了一種全新的“氫農場”策略,該策略基于粉末納米顆粒光催化劑太陽能分解水制氫,太陽能光催化全分解水制氫效率創國際最高記錄。研究
因為世界范圍的能源和環境問題,近年來利用太陽能光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是化學科學領域“圣杯”式的難題,一旦取得突破,有望影響世界能源格局。 李燦院士領導的潔凈能源國家實驗室太陽能部研究團隊長期從事人工光合成太陽燃料的研究,近年來取得了
近日,中科院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室李燦院士領導的研究團隊在“太陽能光催化分解水制氫”研究方面取得重要進展。在以Ga2O3為基礎的半導體催化劑研究中,發現當其表面形成α晶相與β晶相的相結時,可以大幅提高光催化分解水的活性。進一步的時間分辨光譜研
近日,中科院大連化物所李燦院士團隊撰寫的綜述文章——《助催化劑在光催化和光電催化中的作用》在《化學研究述評》上發表。這是第一篇比較系統闡述光催化和光電催化體系中助催化劑作用的文章。該團隊在基于“結”與“助催化劑”構建光催化體系方面的系列研究引起國際同行關注。 利用自然界豐富的太陽能制氫,有
由于世界范圍的能源和環境問題,近年來光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是最具挑戰性的難題,一旦取得突破,有望影響世界能源格局。實現這個反應的關鍵是發展高效的光催化劑,進而構筑高效光催化或光電催化體系。 近日,中國科學院大連化學物理研究所李燦院
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室李燦院士領導的太陽能研究團隊在“太陽能光電催化分解水制氫”研究方面取得新進展。在以Ta3N5為基礎的半導體光陽極研究中,發現“空穴儲存層”電容效應,藉此設計并獲得了高效穩定的太陽能光電化學分解水體系,相關研究成果以通訊形
太陽能和氫能是公認的清潔能源,有望緩解當前全球范圍的能源危機。光催化分解水制氫技術是一種可以直接將太陽輻射能轉化為氫能的途徑,是極具發展潛力的新能源技術。光催化制氫技術是基于半導體帶間躍遷的一種作用機制,其實際應用目前主要受限于催化劑成本和能量轉換性能。有機半導體材料通常由自然界豐富的碳、氫、氮
太陽能和氫能是公認的清潔能源,有望緩解當前全球范圍的能源危機。光催化分解水制氫技術是一種可以直接將太陽輻射能轉化為氫能的途徑,是極具發展潛力的新能源技術。光催化制氫技術是基于半導體帶間躍遷的一種作用機制,其實際應用目前主要受限于催化劑成本和能量轉換性能。有機半導體材料通常由自然界豐富的碳、氫、氮
8月20日,中科院大連化物所催化基礎國家重點實驗室及潔凈能源國家實驗室李燦院士和中科院“百人計劃”學者陳鈞研究員負責的人工光合研究項目取得新進展:將自然光合作用酶PSII和人工半導體納米光催化劑自組裝構建了太陽能光催化全分解水雜化體系,實現了太陽光下的全分解水反應(即:2H2O?O2+2H2)
光催化可實現太陽能到化學能的轉化(如光催化分解水制氫),是獲得新能源的一個重要途徑,發展可有效吸收可見光的光催化材料是實現高效太陽能光催化轉化的前提。為獲得具有寬譜可見光吸收的光催化材料,改善已知光催化材料和探索未知光催化材料是該領域重要的兩個努力方向。 中科院金屬研究所沈陽材料科學國家(
光熱催化是在光催化的基礎上同時加熱,或在熱催化的基礎上同時進行光照以達到共同催化目的的一種新型催化手段,是當前催化領域的研究熱點。文章介紹了光熱協同催化在能源合成領域的應用,包括光熱催化CO加直、光熱催化CO還原、光熱分解水制氫等。研究發現,光催化與熱催化耦合確實能夠高效驅動反應的進行,明顯改善
熱催化是在光催化的基礎上同時加熱,或在熱催化的基礎上同時進行光照以達到共同催化目的的一種新型催化手段,是當前催化領域的研究熱點。文章介紹了光熱協同催化在能源合成領域的應用,包括光熱催化CO加直、光熱催化CO還原、光熱分解水制氫等。研究發現,光催化與熱催化耦合確實能夠高效驅動反應的進行,明顯改善了單一
曾幾何時,“太陽能光伏”給我們帶來了對更高的發電效率和更好的環保性能的憧憬。然而,近年來光伏發電并網難題、光伏產業產能過剩、太陽能產品價格走低、國際貿易糾紛四起等等因素,讓這個產業前景黯淡。也許,只有技術的革新才是這個產業發展的堅實依靠。
光催化可實現太陽能到化學能的轉化(如光催化分解水制氫),是獲得新能源的一個重要途徑。發展可有效吸收可見光(波長為400-700nm)的光催化材料是實現高效太陽能光催化轉化的前提,然而多數穩定的光催化材料的可見光吸收低。摻雜能夠縮小光催化材料的帶隙,是增加光催化材料可見光吸收的基本
TOPTION公司針對于現在社會的能源危機,我公司多年來專注于光化學反應儀,光催化反應器,紫外光化學反應儀,可見光光化學反應儀,高壓汞燈光化學反應儀,長弧氙燈光化學反應儀,強制循環光催化反應器,微量模擬型光化學反應儀。 以至后來又引進國外的先進技術,結合中科院老師的指導,特開發出來一種制造新
光化學反應儀,光催化反應器,紫外光化學反應儀,可見光光化學反應儀,高壓汞燈光化學反應儀,長弧氙燈光化學反應儀,強制循環光催化反應器,微量模擬型光化學反應儀。 以至后來又引進國外的先進技術,結合中科院老師的指導,特開發出來一種制造新能源的系統設備,TOPTION新型的光解水制氫系統,它針對光解水制氫、
氫氣兼具高燃燒值和無污染兩大優勢,是最理想的綠色清潔能源。利用取之不竭的太陽能光催化分解水是一種最為理想的制氫技術,此技術的核心和瓶頸在于開發高效的可見光響應半導體光催化劑,長期以來面臨著巨大挑戰。 鑒于半導體光催化劑的發展現狀,結合材料科學和納米科技的發展前沿,中國科學院新疆理化技術研究所
日,中國科學院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室研究員、中科院院士李燦領導的太陽能研究團隊繼發現并提出利用“空穴儲存層”的新概念和新策略構建高效穩定的太陽能光電化學分解水體系(Angew.Chem.Int.Ed.,2014,53,7295-7299,Guiji Liu,
近年來,太陽能光催化分解水研究受到世界范圍的廣泛關注。導體光催化劑上分解水的基本原理是光催化劑受到光激發后產生光生電子與空穴,光生電子與空穴分離并遷移至光催化劑表面進而發生氧化還原反應。傳統的光催化或光化學反應發生的前提條件要求光催化劑或參與光化學反應的分子被激發光所激發,而傳統的絕緣體材料(以
近日,中國科學院大連化學物理研究所太陽能研究部中科院院士李燦、研究員章福祥等在寬光譜捕光催化劑Z機制全分解水制氫研究中取得新進展。研究結果發現,通過設計和調控BiVO4表面助催化劑Au的擔載,以及雙助催化劑(Au和CoOx)的選擇性負載,可有效促進BiVO4的產氧性能及其與氧化還原電對離子間的電
華東理工大學材料學院楊化桂課題組在太陽能光解水領域取得重要進展,成功制備出一種新型太陽能光解水催化材料。相關研究成果日前發表于《德國應用化學》雜志。 光解水技術可以將太陽能轉換存儲為化學能,被視為解決全球性能源與環境問題的理想方式之一。光解水材料的吸光范圍是太陽能轉換效率的重要影響因素,然而目
“我相信總有一天可以用水來作燃料,組成水的氫和氧可以單獨地或合在一起來使用,這將為熱和光提供無限的來源,所供給光和熱的強度是煤炭所無法達到的,水將是未來的煤炭。”1870年,吉爾斯·費恩在科幻小說《神秘島》中寫下了這段看似“夢囈”般的預言,但他終究沒能等來圓夢的一天。 一百多年后,這個由歐
中國科學院大連化學物理研究所韓洪憲研究員和李燦院士團隊與日本理化學研究所合作,研發出一種可在強酸條件下長壽命電催化分解水的廉價電催化劑,并有望在大規模可再生能源制氫技術中應用。相關研究成果日前發表在《德國應用化學》上。 將太陽能轉化為俗稱“液態陽光”的“太陽燃料”,是應對未來化石燃料枯竭和氣候
中國科學院大連化學物理研究所韓洪憲研究員和李燦院士團隊與日本理化學研究所合作,研發出一種可在強酸條件下長壽命電催化分解水的廉價電催化劑,并有望在大規模可再生能源制氫技術中應用。相關研究成果日前發表在《德國應用化學》上。 將太陽能轉化為俗稱“液態陽光”的“太陽燃料”,是應對未來化石燃料枯竭和氣候
近日,中國科學院合肥物質科學研究院固體物理研究所微納技術與器件研究室李越課題組,與濟南大學教授李村成合作,在Au@ZnO核殼納米顆粒自組裝及光電催化析氫性能研究方面取得進展。圖1.Au@ZnO核殼納米粒子(a) 低倍TEM圖,(b) 高倍TEM圖,(c) SEM圖,(d) HRTEM圖。圖2.不
近日,中國科學技術大學教授楊金龍研究組提出了一種新的光解水的催化機制,使得利用紅外光進行光解水制氫成為可能,為今后全頻譜利用太陽能鋪平了道路。該成果發表在最新一期的《物理評論快報》上。 利用太陽光分解水制氫,為人類提供清潔燃料,被視為化學的圣杯。水分解是吸熱反應,傳統理論要求光催化劑的能隙