線粒體DNA替代療法引爭議
科學家認為,線粒體DNA變體與許多普通人體狀況有關聯,包括神經退行性疾病、癌癥和衰老等。 上世紀90年代,法國科學家干擾了一只老鼠的線粒體,并觀察其大腦將產生何種變化。線粒體能為大部分復雜細胞提供能量。結果發現,名為H和N的兩種老鼠品系的線粒體DNA出現略微不同。 科學家發現,H老鼠能比N老鼠更快地走出迷宮,但當科學家將這兩種老鼠的線粒體進行交換后,制作出了攜帶N線粒體的H老鼠和攜帶H線粒體的N老鼠,測試結果顯示,它們的表現也出現了變化。來自N的線粒體似乎放慢了H老鼠的學習過程,同時,H線粒體略微提高了N老鼠的相關能力。由法國國家健康與醫學研究院(INSERM)遺傳學家Pierre Roubertoux領銜的該團隊還發現了這些老鼠在行為和大腦解剖學方面的其他變化。 這些結果令人驚訝,原因是人們一直將此類線粒體基因組的不同視為中性的,不會產生生物效應。“一個長期存在的觀點是,我們在線粒體基因中發現的遺傳變異不會影響機能。......閱讀全文
線粒體基因
線粒體基因:mtDNA,線狀、環狀,能單獨復制,同時受核基因控制。哺乳動物:無內含子,有重疊基因突變率高。
線粒體基因的定義
線粒體基因:mtDNA,線狀、環狀,能單獨復制,同時受核基因控制。哺乳動物:無內含子,有重疊基因突變率高。
細胞質雄性不育與線粒體基因組
根據研究,線粒體基因組的變異重組與 CMS 的關系最為密切。通過對不同材料的 CMS 系和保持系線粒體 DNA 的 RFLP、RAPD、AFLP 等多態性分析表明,CMS 系和保持系在線粒體基因組結構上具有顯著差異。這可能與植物線粒體基因組自身的特點有關。與動物和真菌的線粒體基因組比起來,植物線粒體
如何提取細胞線粒體
提取新鮮心肌組織細胞內線粒體的方案:心肌組織切碎后在4 ℃介質(0.25 mol/L蔗糖、10 mmol/L Tris-HCl pH7.4,0-4℃)中制備心肌組織勻漿。勻漿經750g、離心10 min后留上清,以9000 g離心20 min 后留沉淀,重新懸浮后以9000 g再離心20 min,棄
線粒體基因何時丟失的?
生物學領域的一個巨大秘密,是細胞內線粒體擁有自己的遺傳基因。為了解釋這個秘密,有一個關于線粒體的起源的假說,就是內共生學說,認為線粒體來源于細菌,即一種原始細菌被真核生物吞噬后,在長期的共生過程中,通過演變,形成了線粒體。該學說認為,線粒體祖先原線粒體是一種可進行三羧酸循環和電子傳遞的革蘭氏陰性
線粒體基因的合成原理
線粒體基因組能夠單獨進行復制、轉錄及合成蛋白質,但這并不意味著線粒體基因組的遺傳完全不受核基因的控制。線粒體自身結構和生命活動都需要核基因的參與并受其控制,說明真核細胞內盡管存在兩個遺傳系統,一個在細胞核內,一個在細胞質內,各自合成一些蛋白質和基因產物,造成了細胞核和細胞質對遺傳的相互作用;但是,核
線粒體基因組的原理
線粒體基因組能夠單獨進行復制、轉錄及合成蛋白質,但這并不意味著線粒體基因組的遺傳完全不受核基因的控制。線粒體自身結構和生命活動都需要核基因的參與并受其控制,說明真核細胞內盡管存在兩個遺傳系統,一個在細胞核內,一個在細胞質內,各自合成一些蛋白質和基因產物,造成了細胞核和細胞質對遺傳的相互作用;但是
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是
線粒體基因組的概念
線粒體是真核細胞的一種細胞器,有它自己的基因組,這些基因組統稱為線粒體基因組。線粒體內的DNA,可參與蛋白質的合成,轉錄,與復制,具有較高的研究價值。
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是一個
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是
細胞化學詞匯線粒體DNA
中文名稱:線粒體DNA外文名稱:Mitochondrial DNA,mtDNA定?????? 義:線粒體DNA是線粒體中的遺傳物質,線粒體能為細胞產生能量(ATP),是在細胞線粒體內發現的脫氧核糖核酸特殊形態。線粒體是為細胞提供能量(ATP)的細胞器。一個線粒體中一般有多個DNA分子。?
細胞化學基礎線粒體DNA
線粒體DNA是線粒體中的遺傳物質,線粒體能為細胞產生能量(ATP),是在細胞線粒體內發現的脫氧核糖核酸特殊形態。線粒體是為細胞提供能量(ATP)的細胞器。一個線粒體中一般有多個DNA分子。它們攜帶著自己的DNA——mtDNA,而這些基因的突變能引起線粒體疾病。雖然疾病癥狀是多變的,但大腦、肌肉和心臟
細胞器的線粒體
線粒體形狀為棒狀,是細胞進行有氧呼吸的主要場所,具有雙層膜,內層膜向內折疊形成“嵴”(作用是可以擴大酶的附著位點)。線粒體又稱"動力車間",細胞生命活動所需的能量,大約95%來自線粒體,含核糖體,可產生DNA和RNA,能相對獨立遺傳。存在于所有真核生物細胞中(厭氧菌及哺乳動物成熟的紅細胞除外),
線粒體基因組的植物細胞和哺乳動物相關介紹
植物細胞 植物細胞的線粒體基因組的大小差別很大,最小的為100kb左右,大部分由非編碼的DNA序列組成,且有許多短的同源序列,同源序列之間的DNA重組會產生較小的亞基因組環狀DNA,與完整的“主”基因組共存于細胞內,因此植物線粒體基因組的研究更為困難。 哺乳動物 哺乳動物的線粒體基因DNA
線粒體基因組的原理簡介
線粒體基因組能夠單獨進行復制、轉錄及合成蛋白質,但這并不意味著線粒體基因組的遺傳完全不受核基因的控制。線粒體自身結構和生命活動都需要核基因的參與并受其控制,說明真核細胞內盡管存在兩個遺傳系統,一個在細胞核內,一個在細胞質內,各自合成一些蛋白質和基因產物,造成了細胞核和細胞質對遺傳的相互作用;但是
測定線粒體基因表達怎么做
親緣鑒定是否可以用線粒體?首先你要知道什么是線粒體,其次你要了解線粒體是怎么遺傳的,應該初中就會講。那么結論是線粒體用于母系。。。就是外孫女-媽媽-外婆-外婆的媽媽。只要來自同一個母親就可以用。但是線粒體的檢測目前沒有一個標準,就是所選取的檢測區域存在者爭議,所以可以做為一個參考。
線粒體腦肌病的基因遺傳
遺傳型中包括核DNA(nDNA)缺陷和線粒體DNA(mt DNA)缺陷: (1) nDNA缺陷:底物傳遞障礙,即肉毒堿原發或繼發缺失,脂質沉積病;底物利用障礙,如脂肪酸和丙酮酸代謝異常;三羧酸循環障礙,如延胡索酸酶缺乏、二氫脂脫氫酶缺乏、琥珀酸脫氫酶缺乏以及烏頭酸酶聯合缺陷等;氧化磷酸化偶聯障礙
母親線粒體使患兒細胞“重生”
來自母親的“禮物”可能會讓線粒體有缺陷的患兒細胞重新恢復活力。 一個研究小組正在測試一種方法,將患兒的血細胞浸泡在母親健康線粒體的“培養基”中,然后重新注入患兒體內。早期跡象表明,這種干預是安全的,可能會改善兒童的健康和發育,研究人員正在計劃后續的臨床試驗。該研究12月21日發表于《科學-轉化
細胞器中的線粒體
細胞中還有一些細胞器,它們具有不同的結構,執行著不同的功能,共同完成細胞的生命活動。這些細胞器的結構需用電子顯微鏡觀察。在電鏡下觀察到的細胞結構稱為亞顯微結構。 線粒體(Mitochondria/Mitochonrion)線粒體是一些線狀、小桿狀或顆粒狀的結構,在活細胞中可用詹納斯綠(Janu
PNAS:細胞線粒體之間的交流
來自北京大學分子醫學研究所,北京大學—清華大學生命科學聯合中心等處的研究人員發表了題為“Kissing and nanotunneling mediate intermitochondrial communication in the heart”的文章,報道了細胞線粒體通訊研究的最新進
植物細胞線粒體DNA的提取
實驗方法原理?分離線粒體DNA和葉綠體DNA的原理是基本一致的。本方法首先是分離完整的細胞器,然后從細胞器中提取DNA。要獲得高純度的細胞器DNA,關鍵是要把所要的細胞器與其他亞細胞結構分離開來,這可以通過差速離心或梯度離心來完成。完整的細胞器經裂解后,可以通過CsCl離心或酚-氯仿抽提獲得DNA。
植物細胞線粒體DNA的提取
實驗方法原理分離線粒體DNA和葉綠體DNA的原理是基本一致的。本方法首先是分離完整的細胞器,然后從細胞器中提取DNA。要獲得高純度的細胞器DNA,關鍵是要把所要的細胞器與其他亞細胞結構分離開來,這可以通過差速離心或梯度離心來完成。完整的細胞器經裂解后,可以通過CsCl離心或酚-氯仿抽提獲得DNA。在
如何提取細胞中的線粒體
看你的目的,是要分離線粒體蛋白(不需要線粒體有活性),還是要做線粒體功能?但是方法一般是把細胞磨碎(有特殊的勻漿器),然后密度梯度離心。如果需要純度很高,那還要超速離心。需要提醒的就是,這樣提取線粒體需要大量,大量的細胞。說明書上說,如Hela,要1-2ml。。。。就是說細胞離下來,得有1-2個ml
線粒體如何促進腫瘤細胞擴散?
作為細胞的動力室,線粒體對于每一個生物體都十分關鍵,因為它們能夠產生能量,同時也控制生存,但是,它們在癌癥中的功能仍然不完全清楚。這是特別重要的,因為,在一般情況下,腫瘤細胞增殖速度超過正常組織,科學家們推測,保存線粒體功能的機制,是支持腫瘤擴張的原因。 現在,美國Wistar研究所的科學家們
細胞凋亡線粒體通路相關介紹
線粒體通路,即通過線粒體釋放凋亡酶激活因子激活 Caspase。線粒體是細胞生命活動控制中心,它不僅是細胞呼吸鏈和氧化磷酸化的中心,而且是細胞凋亡調控中心。此通路由含BH3 結構域的Bcl-2 家族成員(Bid、 Bad、 Bim、 Harikari 、Noxa等)與另外的結合在線粒體外膜面或存在于
線粒體分離實驗—從組織培養細胞中分離線粒體
實驗材料細胞試劑、試劑盒RSBMS 緩沖液儀器、耗材Dounce 勻漿器實驗步驟1. 用 11 ml 冰上預冷過的 RSB 重新懸浮細胞,轉移到一個 15 ml 的 Dounce 勻漿器中RSB(使組織培養細胞膨脹的低滲緩沖液)10 mmol/L NaCl2.5 mol/L MgCl210 mmol
基因治療線粒體肌病的簡介
基因治療策略包括降低突變型mtDNA/野生型mtDNA的比例、使用錯位表達及異質表達、輸入其他同源性基因以及利用限制性內切酶修復突變型mtDNA等。如用人胞質體(含正常線粒體無細胞核的細胞)對缺陷細胞(含缺陷mtRNA,呼吸鏈功能減退的細胞)進行基因補救治療,能成功地使缺陷細胞呼吸鏈功能恢復正常
線粒體基因組的疾病關系簡介
人線粒體DNA(mtDNA),共包含37個基因,這37個基因中有22個編碼轉移核糖核酸(tRNA)、2個編碼核糖體核糖核酸(12S和16S rRNA),13個編碼多肽。 對于可疑線粒體病的患者來說,理想的遺傳學診斷方法是發現導致線粒體結構和功能缺陷的相關基因突變。這些基因突變可能在mtDNA上
線粒體基因組的DNA相關介紹
與細胞核DNA相比,mtDNA作為生物體種系發生的“分子鐘”(molecular clock)有其自身的優點:①突變率高,是核DNA的10倍左右,因此即使是在近期內趨異的物種之間也會很快地積累大量的核苷酸置換,可以進行比較分析;②因為精子的細胞質極少,子代的mtDNA基本上都是來自卵細胞,所以m