癌癥的謎題在于,腫瘤能夠利用我們的身體作為人體盾牌來避開治療。腫瘤在正常的組織和器官中生長,通常醫生在通過手術、化療或輻射抗擊癌癥的過程中,會損壞、毒害或切除我們身體的健康部分。但是,11月27日發表在國際知名期刊《Small》的一項研究中,華盛頓大學的科學家們描述了一種新的系統,將化療藥物包裝在小小的合成“納米載體”包裝中,這可被注射到患者體內,并在腫瘤部位解體,釋放出有毒藥物。該研究小組是由華盛頓大學材料科學與工程系教授Miqin Zhang帶領的,他們不是第一個從事于納米載體的團隊。但是Zhang教授團隊開發的納米載體包,是一種混合的合成材料,這賦予了該納米載體獨特的能力,不僅僅能運送藥物,而且還能運送小的熒光或磁性顆粒,對腫瘤進行染色,從而使外科醫生能夠看見它們。Zhang說:“我們的納米載體系統真的解決了兩種需求――藥物傳遞和腫瘤成像。首先,這種納米載體可以傳遞化療藥物并將它們釋放在腫瘤區,這使得健康組織免于毒副作用。......閱讀全文
眾所周知,癌癥化療中,需要使用高毒性的化療藥物。由于藥物的非特異性,在殺死癌細胞的同時,同樣殺死正常細胞,損害正常的組織和器官。事實上,70%以上的接受化療的癌癥患者,最后死于藥物的毒性,以及癌細胞對藥物的耐藥性。是否可以使用對正常細胞和組織無毒的納米材料或分子,讓這些材料或分子進入腫瘤后才產生
迷你飛船”在血管中潛行,通過血管壁上的小孔潛入腫瘤組織,通過抗體識別并進入腫瘤細胞;一旦進入細胞,這些“飛船”便釋放它們攜帶的貨物——抗癌藥物,摧毀腫瘤細胞:任務至此圓滿完成。 早在21世紀初,這種關于納米藥物的設想就經常以動畫片的形式向人們表明,納米藥物或將是對抗腫瘤的靈丹妙藥,可以找到并進
中國科學院科技戰略咨詢研究院戰略情報研究所研制的“2016全球最受公眾關注的科學成果”,通過計量統計遴選出天文學與天體物理[1]、物理學、化學、地球科學、生命科學這五個學科中受到科技界熱切關注的科學成果,及中國研究者參與的每個學科TOP30受公眾關注的科學成果,為科技工作者把握最新的科學研究熱點
腫瘤耐藥基因治療:化療是目前臨床上治療惡性腫瘤的最重要手段之一,然而由于腫瘤細胞常常會對化療藥物產生耐藥而導致患者對治療不再敏感,最終導致化療失敗甚至疾病復發。根據腫瘤細胞的耐藥特點,耐藥可分為原藥耐藥(PDR)和多藥耐藥(MDR)兩大類。原藥耐藥(PDR)是指對一種抗腫瘤藥物產生抗藥性后,對非同類
來自國家自然科學基金委員會的消息,國家自然科學基金委員會公布了2012年度面上項目、重點項目、重大國際(地區)合作研究項目、青年科學基金項目、地區科學基金項目、海外及港澳學者合作研究基金項目、科學儀器基礎研究專款項目等方面的評審結果。有關評審結果將通知相關依托單位,其科研管理人員可登錄
癌癥是少數現代醫學仍然無法攻克的疾病之一,癌細胞以其復雜多樣的代謝方式和生態微環境給癌癥治療帶來極大的困難。在目前癌癥的治療策略中,化療仍是最常用的手段之一。但常規的癌癥化療,在高毒性的藥物作用于全身造成強烈毒副作用的同時,病灶的藥效卻隨之大幅降低。事實上,強毒副作用與低化療效果成為了癌癥病人的
癌癥是少數現代醫學仍然無法攻克的疾病之一,癌細胞以其復雜多樣的代謝方式和生態微環境給癌癥治療帶來極大的困難。在目前癌癥的治療策略中,化療仍是最常用的手段之一。但常規的癌癥化療,在高毒性的藥物作用于全身造成強烈毒副作用的同時,病灶的藥效卻隨之大幅降低。事實上,強毒副作用與低化療效果成為了癌癥病人的
近年來,隨著超聲分子影像技術的發展以及在臨床中的應用,科學家們已經能夠利用超聲分子技術為患者提更加精準的診療了。如今超聲醫學已經突破了傳統超聲顯像診斷領域的限制,邁入了“納米”時代。而且研究人員也開發出了更加新型的超聲技術,能夠敏感地發現實質性臟器內常規影像檢查無法發現的轉移性癌癥病灶,并在超聲
惡性腫瘤已經成為人類的“第一殺手”。攻克癌癥一直是科學家努力的方向。然而,癌細胞以其復雜多樣的代謝方式和生態微環境給癌癥的治療帶來極大困難。常規的癌癥化療,在高毒性的藥物作用于全身造成強烈毒副作用的同時,病灶的藥效卻隨之大幅降低。事實上,很多患者最后死于藥物毒副作用或耐藥性
清華大學醫學院生物醫學工程系高衛平課題組在藥劑學國際頂級期刊《控制釋放雜志》(Journal of Controlled Release)上在線發表合作論文《腫瘤靶向,pH和超聲響應的多肽-阿霉素納米偶聯物克服腫瘤耐藥性》(Tumor-Homing, pH -and Ultrasound-Res
Science:中國科學技術大學在量子力學再取新突破 實現對量子系統的調控是人類認識并利用微觀世界規律的必然訴求,也是諸多前沿科學領域的核心要素。自旋作為一種重要的量子調控研究體系,在世界各國的量子計劃中均被列為重點研究對象。開展單自旋量子調控研究有助于人們在更深層次上認識量子物理的基礎科學問題,
“你的腫瘤讓你成為自己身體的囚犯,你不能唱歌,不能跳舞,你甚至已經不能告訴家人你愛我們。” 凱瑟琳2015年被診斷出患有兒童腦腫瘤,與病魔抗爭一年后最終還是留給了家人巨大的悲痛。凱瑟琳去世后,她的家人寫下了她從確診直至離世的讓人心酸淚目的抗爭過程,以此希望能有更多資金投入到腦瘤的研究中,為其
蛋白質,英文名稱“protein”,是生物體中廣泛存在的一類生物大分子,也是生命活動的主要承擔者。 時值春暖花開,在中國科學院生物物理研究所尋訪,本報記者在這里看到的“蛋白質”,不僅充滿科學的奧妙和神奇,而且彰顯出其應有的活潑、活性與活力,恍若走進一所“夢工廠”。那么
CRISPR/Cas這項基因編輯技術自從問世以來,已經吸引了無數歡呼和掌聲,在短短幾年之內,它已經成為了生物科學領域最炙手可熱的研究工具。然而它最近也頻頻被“潑冷水”,那么基因編輯未來究竟何去何從呢? 基因編輯技術指能夠讓人類對目標基因進行“編輯”,實現對特定DNA片段的敲除、加入等。CRI
近日,合肥工業大學科研團隊成功研發一種新型可注射水凝膠,通過對腫瘤局部長效可控的藥物釋放,實現了腫瘤治療效率的大幅提升,為癌癥協同治療提供了一種新的理論方法。相關成果以《電荷反轉介導形成的粒子水凝膠作為多響應藥物遞送平臺用于癌癥的協同治療》為題發表于英國皇家化學會學術刊物《材料視野》(影響因子1
近期,中科院強磁場科學中心王輝研究員與華盛頓大學Miqin Zhang教授等在癌癥碳基藥物載體方面取得新進展:制備出一種類紅細胞納米載體---多功能熒光介孔碳基納米盤。 納米尺度的藥物輸送載體因其響應型的藥物釋放、多模型的體內成像以及復合治療的協同效應,近年來在生物醫學領域展現了極高的應用
臨床化療過程中,無法準確地獲取病灶區實際藥物含量信息是醫生所面臨最棘手的問題之一,而該信息是醫生及時調整治療方案以實現個性化治療的重要依據。近期,中國科學院上海硅酸鹽研究所研究員施劍林、步文博報道了一種基于稀土功能材料的新型多功能影像探針,在活體水平成功實現了上轉換發光(UCL)和磁共振(MRI
據物理學家組織網報道,化療是當前治療癌癥的一種有效方法,不過它也存在一些不良副作用,例如惡心反胃、肝毒性和免疫系統功能下降等。特拉維夫大學的丹·皮爾、利莫納·馬格利特和同事們已經研究出一種可以直接把化療藥物輸送到癌細胞,避免與健康細胞發生互動的“納米車”,這種方法可在增加化療效果的同時
2月20日,科學技術部基礎研究司與高技術研究發展中心聯合召開“2016年度中國科學十大進展解讀會”,發布了2016年度中國科學十大進展。中國科學院相關單位獨立或合作取得的7項重大科學成果入選,包括:研制出將二氧化碳高效清潔轉化為液體燃料的新型鈷基電催化劑;開創煤制烯烴新捷徑;揭示水稻產量性狀雜
活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進
由中國科學院、中國工程院主辦,中國科學院學部工作局、中國工程院辦公廳、中國科學報社承辦,中國科學院院士和中國工程院院士投票評選的2016年中國十大科技進展新聞、世界十大科技進展新聞,2016年12月31日在京揭曉。 入選新聞囊括了一年來最重要的科學發現和技術突破。 入選的2016年中國十大
2017年5月5日,英國皇家化學會旗下期刊《Biomaterials Science》官方公布一則好消息:蘇州大學劉莊教授榮獲2017年度“Biomaterials Science Lectureship”獎項,成為首個獲此殊榮的中國學者。 這一獎項創立于2014年,每年由 Biomateri
癌癥病人在化療中通常需要使用高毒性的化療藥物。由于藥物的非特異性,在殺死癌細胞的同時,同樣殺死正常細胞,損害正常的組織和器官。事實上,70%以上接受化療的癌癥患者,最后死于藥物毒性。是否可以使用對正常細胞和組織無毒的納米材料或分子,讓這些材料或分子進入腫瘤后才產生毒性,或引起毒害作用?最近,中科
癌癥病人在化療中通常需要使用高毒性的化療藥物。由于藥物的非特異性,在殺死癌細胞的同時,同樣殺死正常細胞,損害正常的組織和器官。事實上,70%以上接受化療的癌癥患者,最后死于藥物毒性。是否可以使用對正常細胞和組織無毒的納米材料或分子,讓這些材料或分子進入腫瘤后才產生毒性,或引起毒害作用?最近,中科
“做學問就是要堅持下去,任何失敗都不低頭,在任何領域里堅持做10—20年,必能有所突破。如果中途沒有堅持下去,就很難做出讓你心動的結果。 近年來,我國癌癥發病率和死亡率呈明顯上升趨勢。然而,傳統治療手段不僅針對性低、而且毒副作用明顯,導致藥品無效耗費率高。 中國科學院深圳先進技術研究院醫藥所
腫瘤具有高死亡率、高轉移率和高復發率,是危害人類健康的重大疾病。診斷腫瘤的傳統方法有病理組織活檢、核磁共振成像(magnetic resonance imaging,MRI)、電子計算機斷層掃描(computed tomography,CT)、B 超、X 線胸片、內鏡檢查等。這些檢查對于腫瘤早期
分析測試百科網訊 質譜技術的快速發展和應用有目共睹。學物理出身、從事科學研究的質譜學者會做出什么樣的選擇?數年前在北京質譜年會上,第一次聽聶宗秀的報告時就印象深刻,用離子阱質譜測定數百兆分子量的大顆粒的工作讓人耳目一新。如果說探索高質量極限的工作還不夠引人注意,那么用MALDI測定那些以前不能測
鈷/氧化鈷雜化二維超薄結構電催化還原CO2為液體燃料01 1、研制出將二氧化碳高效清潔轉化為液體燃料的新型鈷基電催化劑 將二氧化碳在常溫常壓下電還原為碳氫燃料,是一種潛在的替代化石原料的清潔能源策略,并有助于降低二氧化碳排放對氣候造成的不利影響。實現二氧化碳電催化還原的關鍵瓶頸問題是將二氧化
在科學技術蓬勃發展的今天,大多數腫瘤經臨床規范化治療后,患者的生存期及生存質量均有較為顯著的提升,然而,對于腦膠質瘤而言,對它的療效在近30年來卻沒有得到很大的改觀,腫瘤患者總體預后依然較差,5年生存率不足10%,中位生存期僅為12-15個月,被認為是目前最難治愈的腫瘤之一。那么,是什么原因阻擋
近日,中國科學院國家納米科學中心李樂樂課題組在基因/藥物共遞送研究中取得新進展,相關研究成果“A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug-Gene Combina