<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    近代物理所在微孔支撐大面積多孔石墨烯研制中取得進展

    石墨烯是由單層碳原子以蜂窩狀點陣組成的典型二維納米材料,完美單層石墨烯對于任何分子均不能滲透,是迄今為止厚度最薄且能分離不同兩相的隔膜材料。帶有納米孔的石墨烯則表現出優異的溶液離子和氣體分子選擇性,在海水淡化、污水處理、空氣凈化等領域具有廣闊的應用前景。目前國際上已發展了多種制備石墨烯納米孔的方法,但如何在大面積石墨烯樣品上快速制備高密度納米孔仍未得到有效解決。中國科學院近代物理所材料研究中心研究人員在聚合物納米孔研究基礎上,發明了一種快速制備具有微孔支撐的大面積多孔石墨烯的新方法,解決了當前多孔石墨烯研究中的瓶頸問題。重離子輻照技術制備石墨烯納米孔 科研人員把大面積石墨烯轉移至PET膜上形成G/PET復合結構(圖A),然后利用蘭州重離子加速器提供的高能重離子對G/PET復合結構進行輻照,形成石墨烯納米孔并在PET中形成潛徑跡(圖B);再利用非對稱蝕法在PET中制備出錐形孔并形成具有微孔支撐的石墨烯納米孔(圖C)。該方法充......閱讀全文

    石墨烯上成功制備可控納米孔

    原文地址:http://news.sciencenet.cn/htmlnews/2017/9/387887.shtm俄羅斯國家研究型工藝大學(NUST MISIS)的專家,與其他國家物理學家組成的國際小組共同開展一系列快重離子輻照石墨烯實驗。結果顯示,可以通過這種方式在石墨烯上制備直徑可控的納米孔。

    能當皮膚會診癌,這還是你認識的石墨烯嗎

      石墨烯材料將可用于病人皮膚重建。12日,在中科院重慶研究院舉行的重慶石墨烯研究院有限公司2017年投資項目簽約儀式暨成果發布會上,“石墨烯高分子復合人工皮膚的研制”等涉及到石墨烯在電子信息智能終端、復合材料以及生物醫療領域的5個項目簽約,同時3項石墨烯產品最新成果進行了展示。  石墨烯人工皮膚2

    智能所在飲用水重金屬微污染物檢測研究中取得新成果

       石墨烯/納米金的“淬滅/增強熒光”機制檢測汞重金屬示意   在國家科技部立項的國家重大研究計劃“應用納米技術去除飲用水中微污染物的基礎研究”的支持下,中科院合肥物質科學研究院智能所研究并發展了基于熒光檢測方法的新機制,設計了相應的檢測體系,實現了對飲用水中

    材料前沿丨石墨炔:從發現到應用

    編者按:《石墨炔:從發現到應用》為國內外第一部全方位、系統地介紹石墨炔從基礎科學研究到實際應用探索的前沿著作。由我國首次發現石墨炔的專家,中國科學院院士李玉良先生及其團隊核心專家李勇軍研究員共同撰寫。內容新穎、權威,科學性和可讀性強!合成、分離新的不同維數碳同素異形體是過去二三十年研究的焦點,科學家

    我國學者成功構建石墨烯泡沫材料網絡拓撲模型

      近期,中科院合肥物質科學研究院等機構的學者們合作,通過研究石墨烯泡沫的掃描電子顯微鏡鏡像,成功構建了一種三維孔片網絡拓撲模型,并引入參數和幾何量實現了對其力學行為的有效評估。國際知名學術期刊《美國化學會·納米》日前發表了該成果。  石墨烯泡沫是以準二維石墨烯作為基本組件,以無序堆砌為主要建構方式

    古人學問無遺力 今有分子光譜百家鳴

      分析測試百科網訊 2018年10月20日,由中國光學學會和中國化學會主辦的“第20屆全國分子光譜學學術會議”暨由中國光學會光譜專業委員會主辦的“2018年光譜年會”在山東省青島市銀沙灘溫德姆至尊酒店隆重召開,本次會議由中國科學院青島生物能源與過程研究所承辦。國內外光譜及相關領域的院士、知名專家學

    石墨烯神奇材料 為將來把“電”充滿

       分析測試百科網訊 石墨烯作為獨具特色的新材料多次引起人們的關注,成為這個國內最大規模、最具影響力的“明星”材料。石墨烯到底有哪些神奇之處,能為人們帶來什么驚喜?小編匯集了一些專家的見解,整理如下:圖片來源網絡   人類正行進在以硅為主要物質載體的信息時代,下一個量子時代,石墨烯很可能嶄露頭角 

    石墨烯是世界上最薄最“快”的納米材料

       日前,在深圳舉辦的第十九屆中國國際高新技術成果交易會上,石墨烯作為獨具特色的新材料再次引起人們的關注,成為這個國內最大規模、最具影響力的科技展會上一個耀眼的“明星”。石墨烯到底有哪些神奇之處,能為人們帶來什么驚喜?記者采訪了相關專家。    人類正行進在以硅為主要物質載體的

    走近“顛覆性技術”:最薄最快的納米材料石墨烯

      日前,在深圳舉辦的第十九屆中國國際高新技術成果交易會上,石墨烯作為獨具特色的新材料再次引起人們的關注,成為這個國內最大規模、最具影響力的科技展會上一個耀眼的“明星”。石墨烯到底有哪些神奇之處,能為人們帶來什么驚喜?記者采訪了相關專家。  人類正行進在以硅為主要物質載體的信息時代,下一個量子時代,

    新型柔性鋅—空氣電池可編織可穿戴

      將電池制作成能彎曲、易攜帶的配飾,甚至編入纖維制成衣服,是否會成真?2日,記者從天津大學胡文彬教授、鐘澄教授、鄧意達教授課題組獲悉,該課題組通過一種快速、簡單、連續的方法制備出一種可編織的柔性線狀鋅-空電池;此外還設計制備了一種具有高效氧還原與氧析出催化性能的原子級厚度的介孔Co3O4/N—rG

    納米碳催化合成苯乙烯研究獲進展

      中科院金屬研究所沈陽材料科學國家(聯合)實驗室催化材料研究部蘇黨生研究員、張建研究員、王銳博士與德國Fritz Haber研究所、中科院長春應化所、克羅地亞研究人員合作,借助在納米金剛石表面上高度彎曲的氧摻雜石墨烯活性結構,在無氧、無水蒸氣保護的低溫條件下實現了乙苯直接脫氫制取苯

    孔洞石墨烯氣凝膠有望用于低溫能源器件

      石墨烯氣凝膠,經由石墨烯片層三維搭接、組裝而來的石墨烯宏觀體材料,具有三維連續多孔網絡結構,表現出高比表面積、高孔隙率、優異導電性能及電化學行為,在能源存儲、傳感、吸附、復合材料等領域有重要應用前景。然而,目前常規石墨烯氣凝膠的三維組裝以石墨烯片層間的“面-面”局部搭接方式為主,進而形成具有三維

    大連化物所團隊提出二維異質結構保護鋰金屬負極新策略

      近日,中國科學院大連化學物理研究所二維材料與能源器件研究組吳忠帥團隊與低碳催化與工程研究部劉中民、葉茂團隊合作,提出了一種二維介孔異質結構雙功能鋰離子再分配新策略,獲得高穩定、高容量且無枝晶的金屬鋰負極。  全球化石能源危機的不斷加劇引起了科研人員對清潔能源的日益關注和廣泛研究,其中開發高能量密

    研究人員用選區激光燒結的方法制備復合材料

      納米顆粒(碳納米管、片狀石墨烯、富勒烯類納米顆粒等)用于制備復合材料時,很小的添加量就能獲得較為明顯的性能提升,并且不會像纖維類增強材料會引起聚合物熔體粘度的大幅上升而造成加工難度增加,從而引起了相關研究人員的廣泛關注。由于選區激光燒結的技術特點,對所使用的聚合物粉末顆粒大小、表面形態等均有特殊

    有序介孔碳固相微萃取涂層測定水中氯苯類有機污染物

    自從1989年加拿大滑鐵盧大學Pawliszyn教授LU發明固相微萃取(SPME)技術以來,該方法因具有快速、靈敏、方便等優勢,己成為一種重要的樣品分析前處理技術。萃取頭涂層則是SPME技術的核心。研發新型涂層材料是該領域的研究熱點。目前各種有機涂層,如PA , PDMS, PDMS VB 等己實現

    我國學者以高分子泡沫材料成功合成三維納米復合材料

      高分子納米復合材料是材料科學領域新興的研究方向之一。以碳納米管(CNTs)和石墨烯為代表的新型碳納米材料由于具有獨特的結構和優異的性能,在高分子納米復合材料領域引起了廣泛的研究興趣。但是,如何將碳納米材料分散在高分子基體并確保已經分散的納米顆粒在復合材料制備過程中(如加熱、加壓等)的穩定性,是制

    新疆理化所納米反應器限域合成石墨烯量子點研究獲進展

      石墨烯量子點兼具石墨烯材料的優異性能和量子點材料的邊界效應,因而呈現一系列新的特性,目前受到化學、物理、材料等各領域科學家的廣泛關注。自被發現以來,關于這種新型零維材料的制備研究已取得一些重要進展,但如何簡易獲得尺寸可控、粒徑均一、分散性良好的石墨烯量子點仍是一個挑戰。  中國科學院新疆理化技術

    2014年世界新材料科技發展回顧

      在納米材料領域,美國國家標準與技術研究院的研究人員通過在納米尺度上采用一種獨特的三明治結構,開發出一種多壁碳納米管材料,其整體厚度還不到人類頭發直徑的百分之一,卻可以大幅降低泡沫制品的可燃性。國家直線加速器實驗室和斯坦福大學合作,首次揭示了石墨烯插層復合材料的超導機制,并發現一種潛在的工藝能使石

    新型場效應晶體管傳感器實現羥基自由基檢測

       復旦大學高分子科學系、聚合物分子工程國家重點實驗室研究員魏大程課題組在場效應晶體管傳感器領域獲重要進展。4月4日,相關研究成果在線發表于《自然-通訊》。  據介紹,羥基自由基(?OH)是一種生物體內存在的超高活性自由基,能夠破壞諸如細胞與組織內的脂質、蛋白質、DNA等生物分子,與許多疾病及衰老

    金屬所高性能鋰硫電池用多組元復合電極材料研究獲進展

      硫作為正極材料,具有較高的理論比容量(比現有商用正極材料的容量高出一個數量級),同時還具有成本低廉、儲量豐富和環境友好等優點,因而鋰硫電池被認為是電化學儲能中最有前景的新一代電池之一。但是鋰硫電池在走向實際應用過程中,仍有許多問題亟待解決,如硫和放電產物硫化鋰的低電導率、在充放電過程中形成的可溶

    青島能源所開發出基于石墨炔的高性能儲鈉材料

      中國科學院青島生物能源與過程研究所碳基材料與能源應用研究組研究發現,通過對石墨炔碳材料進行分子設計控制炔鍵的數目,增加更多的儲鈉位點和傳輸通道,進而制備出具有更好電化學表現的儲鈉材料,其優異的比容量和超長的循環穩定性表明石墨炔類碳材料在儲能方面具有巨大的應用潛力。  由于鈉元素在全球含量豐富且廉

    環境修復領域的大牛們近年來做了哪些貢獻?

      隨著化工,醫藥,農藥等工業的迅速發展,工業廢水中有害污染物的種類和數量迅猛增加。傳統生物處理技術難以使含有有毒有機污染物的工業廢水達到排放,對環境以及人體健康都構成了嚴重的威脅,因此環境修復迫在眉睫。國內外的科學家們一直在環境修復研究中不斷尋求突破。以下盤點在環境修復中國內外的大牛們的研究進展。

    石墨烯:醫療的下一次革命也許就靠它了!

      兩位英國物理學家通過一種簡單的方法從石墨中分離出單層石墨,即石墨烯,并因此獲得了2010年諾貝爾物理學獎。石墨烯是由二維單層碳原子組成的六角晶格物質,是世界上最薄、最好的導電和導熱材料,是人類已知強度最高的物質,具備極高的透光性和柔韌性。正因為這些優異的性能使之贏得了“最完美材料”的美譽,許多人

    電解水制氫:如何設計金屬碳化物催化劑?

      金屬碳化物HER  氫氣是重要的清潔能源,具有來源廣、能量密度高、無污染等優點。電解水制氫是高效、綠色的制氫途徑,但嚴重依賴貴金屬Pt催化劑,亟需發展經濟、高效的非貴金屬電催化劑。過渡金屬碳化物具有類鉑的電子性質和催化行為,是一種潛在的析氫電催化劑。近年來,相關研究工作通過合理的設計策略,調控并

    寧波材料所在氮摻雜納米碳材料研究方面取得進展

      氮摻雜納米碳材料研究已經成為國際碳材料領域的熱點之一,這主要是因為氮原子比碳原子多一個價電子,氮摻雜進入石墨的六元環結構后可形成吡啶、吡咯、石墨氮、吡啶氧化物等含氮官能團,不僅可以提高納米碳材料的表面化學活性,還可對其電子結構進行調節。在眾多納米碳材料中,空心碳球具有低密度、高比表面積、可填充空

    新型功能化富集材料用于溶液樣品中痕量組分萃取分離

    在分析實踐中,有機污染物通常以痕量或超痕量存在于復雜基質中,分離和檢測成為突出的問題。雖然近些年開發了許多靈敏度和選擇性很高的儀器分析方法,但高效液相色譜技術仍然是應用最廣泛的分析方法之一。通常,樣品需經過萃取分離和富集以后才能進入分析儀器進行準確的測定。而樣品的萃取分離通常需借助吸附容量大、選擇性

    超高功率超級電容器電極材料:多孔三維寡層類石墨烯

      雙電層超級電容器(EDLC)具有功率密度高、循環壽命長、安全性好等優點,在消費電子產品、電動汽車、國防科技和航空等領域具有廣泛的應用,相關研究成為當前的前沿熱點。理想的EDLC電極材料應同時具備:1)高比表面積以確保足夠的電荷存儲空間;2)均衡分布的孔結構以利于電解液離子的快速輸運,提升比電容和

    用萘能開發出鋰電池負極材料 電容量比石墨電極高兩倍

      日本東北大學和東京大學的一個聯合研究小組首次用家用防蟲劑原料——大環狀有機分子萘,開發出一種全固體鋰離子電池的負電極材料。用這種新材料(CNAP)制成的負極電容量比石墨電極高兩倍,且經過65次沖放電后仍能保持原來的大容量狀態。  可充電鋰離子電池已成為生活中不可缺少的儲能技術,手機、筆記本電腦、

    用萘能開發出鋰電池負極材料

      日本東北大學和東京大學的一個聯合研究小組首次用家用防蟲劑原料——大環狀有機分子萘,開發出一種全固體鋰離子電池的負電極材料。用這種新材料(CNAP)制成的負極電容量比石墨電極高兩倍,且經過65次沖放電后仍能保持原來的大容量狀態。   可充電鋰離子電池已成為生活中不可缺少的儲能技術,手機、筆記本電腦

    新型納米碳材料在超級電容器領域的應用研究取得系列進展

      碳材料以其優異的性能而成為材料領域的研究熱點之一,國內外材料科學工作者圍繞新型納米碳材料的可控制備及其在超級電容器等化學儲能器件中的應用,開展了大量的研究工作。在中科院“百人計劃”和國家自然科學基金項目支持下,中國科學院蘭州化學物理研究所固體潤滑國家重點實驗室閻興斌研究員帶領的研究團隊自2009

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频