<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 我國學者以非富勒烯受體成功研制高穩定有機太陽能電池

    有機太陽能電池憑借其質輕、柔軟并且可制備大面積器件等突出優點,被認為是具有重大應用前景的新能源技術。由于本體異質結太陽能電池的光伏性能很大程度上依賴活性層的形貌,化學所高分子物理與化學實驗室研究人員開展了一系列關于優化活性層形貌的工作(Adv. Mater. 2012, 24, 6335-6341;J. Phys. Chem. C 2013, 117, 14920-14928;Adv. Mater. 2017, 29,1703777)。作為優化有機太陽能電池活性層形貌的主要方法,使用高沸點溶劑添加劑,例如1,8-二碘辛烷,能夠有效提高器件的光伏性能。但這種方法在有機太陽能電池的大規模生產中存在嚴重的問題,尤其是殘留的高沸點溶劑添加劑會影響器件的穩定性以及重現性。近年來,非富勒烯受體由于其具有強吸收、高度可調性以及良好穩定性,引起領域內的廣泛關注并取得了十分突出的結果。隨著對這類非富勒烯太陽能電池的深入研究,研究人員發現這類受......閱讀全文

    AS:高效穩定非富勒烯太陽能電池制備新途徑

      當前,高效率的有機太陽能電池多基于非富勒烯受體。隨著研究深入,新的非富勒烯受體分子被不斷設計合成,相應的器件效率也在提升。而器件的穩定性尚未達到商業化要求。已有研究報道了非富勒烯受體分子結構與器件效率之間的關系,而關注非富勒烯受體分子結構與器件穩定性之間關系的工作相對較少。探索受體分子結構與器件

    我國學者以非富勒烯受體成功研制高穩定有機太陽能電池

      有機太陽能電池憑借其質輕、柔軟并且可制備大面積器件等突出優點,被認為是具有重大應用前景的新能源技術。由于本體異質結太陽能電池的光伏性能很大程度上依賴活性層的形貌,化學所高分子物理與化學實驗室研究人員開展了一系列關于優化活性層形貌的工作(Adv. Mater. 2012, 24, 6335-634

    Nature-Reviews-Materials:用于有機太陽能電池的非富勒烯受體

    有機太陽能電池的方案  在過去的十年里有機光伏器件已經取得了重大進展,主要是供體有機半導體新材料的開發發揮了非常重要的作用。大量的富勒烯衍生物已被用作受體,然而,對新型非富勒烯受體開發的研究正如火如荼。近日,來自北京大學占肖衛教授(通訊作者)團隊總結了富勒烯化合物用于有機太陽能電池的優缺點,文章簡要

    利用非富勒烯受體材料研究有機疊層太陽能電池獲進展

      太陽能是人類可利用的最豐富的可再生能源,太陽能電池是將太陽能直接轉換成電能,而不會產生二氧化碳排放。有機光伏(OPV)材料和器件以其溶液處理的低成本、豐富的原材料以及可以制備成柔性和半透明器件等突出優點,成為新一代太陽能電池的重要研發對象。在有機太陽能電池中,將具有互補吸收光譜的兩個本體異質結(

    化學所非富勒烯全小分子太陽能電池效率研究獲進展

      溶液可加工本體異質結太陽能電池具有質量輕、成本低、可采用溶液印刷方法制備柔性大面積電池面板等優勢,成為了近年來新能源研究領域的研究熱點。本體異質結太陽能電池活性層由溶液可加工的共軛聚合物或小分子給體與受體共混組成。其中,以富勒烯及其衍生物制備的電子受體材料為有機太陽能電池領域的發展做出了巨大貢獻

    化學所在非富勒烯型聚合物太陽能電池研究中取得進展

      近年來,聚合物太陽能電池由于其重量輕、價格低廉、可通過印刷的方式制備大面積柔性器件等優勢,得到了學術界和工業界的廣泛關注,是重要的前沿研究領域。聚合物太陽能電池的活性層通常由基于聚合物/有機小分子的電子給體和電子受體共混而成。作為電子受體材料,以PCBM為代表的富勒烯類n-型有機半導體已經被廣泛

    富勒烯具有明顯抗衰老效果

      最近,歐洲科學家發現富勒烯具有明顯的抗衰老效果,可以使實驗小鼠的平均壽命從2年延長到5年。基于此實驗,歐美等國家已經推出了富勒烯抗衰老保健品。   據介紹,富勒烯結構完美、性能穩定,被稱為“納米王子”。由于富勒烯的中空結構,其內部還可被置入一個或多個金屬原子甚至分子,形成所謂的金屬富勒烯。富勒

    富勒烯薄膜光伏衰減機制與穩定性提升研究獲進展

      聚合物太陽能電池(PSCs)作為一種新型薄膜光伏電池,具有成本低、可溶液制備、毒性低、材料來源廣等優點,被認為是很有前途的新型能源技術之一。要實現PSCs的真正商業化應用,需要滿足三大條件:高效率、高穩定性和低成本。經過科學家的不懈努力,目前PSCs的最高效率已超過18%,已接近商業化應用要求。

    富勒烯或可形成純碳新膠體

      據美國物理學家組織網2月17日報道,球形碳分子富勒烯(碳-60)在納米技術和電子領域有很多獨特性質和潛在應用。最近科學家發現,碳-60在一定條件下還能形成一種單一成分的膠體。目前為止,已知的膠體都是由兩種成分構成:均勻分布的溶質和溶劑。   此前,科學家發現碳-60能形成多種物

    烏克蘭專家建議慎用富勒烯水

      烏克蘭國家科學院材料學研究所是烏國內唯一研究碳納米結構,尤其是富勒烯合成、提取、分離過程和鑒定的機構。該研究所專家認為,目前市場上銷售的瓶裝富勒烯水—“C60生命之水”的安全問題值得關注。   富勒烯水在全世界所有國家被認為對人體健康有害,不論從水合富勒烯分子的毒性,還是從富勒烯分子的膠體粒子中

    中科院化學所有機小分子光伏材料研究獲系列進展

      記者近日從中科院化學所獲悉,該所有機固體重點實驗室的研究人員在高效有機小分子光伏材料的研究上取得系列進展,并在近期受邀為英國皇家化學會《化學會綜述》雜志撰寫相關綜述文章。   據研究人員介紹,有機太陽能電池材料分小分子和高分子兩種,目前效率最高的是高分子給體與富勒烯受體共混體系。然而,高分子的

    體光伏材料側鏈工程研究獲進展

      聚合物太陽能電池具有結構和制備過程簡單、成本低、重量輕、可制備成柔性器件等突出優點,成為近年來國內外研究熱點。將富勒烯衍生物受體用n-型有機半導體材料取代,可以克服富勒烯受體存在的可見光區吸光弱、能級調控困難和形貌穩定性差等缺點,近年來受到研究者的關注。多種性能優異的非富勒烯型受體被設計出來,如

    從富勒烯到石墨烯,怪異的中國式創新

      如果材料本身有意識,所有的材料一定都嫉妒石墨烯。這家伙紅得發紫,是當下材料領域最耀眼的明星。  細想下來,我在材料科學這個領域居然混了將近20年了。96年是國家863成果10周年成果展覽,想起當時的盛況,恍如昨日。  如果說那一年最耀眼的材料明星是誰,當之無愧的是富勒烯。  不知道是偶然還是必然

    富勒烯材料導電性能極大提升

      《自然》雜志1月18日(北京時間)發表了美國密歇根大學開發的一種新方法,誘導電子在有機材料富勒烯中“穿行”,距離遠遠超過此前認為的極限。這項研究提升了有機材料應用于太陽能電池和半導體制造的潛力,或將改變相關行業游戲規則。  與當今廣泛應用的無機太陽能電池不同,有機物可以制成便宜的柔性碳基材料,如

    中國科大成功捕獲“消失”的富勒烯

      近日,中國科學技術大學教授楊上峰課題組成功地合成并分離表征了一種十余年來一直被認為因穩定性低而“不可被分離”的新結構內嵌富勒烯,這一發現彌補了內嵌富勒烯研究領域的一席空白,實驗上證明了分離出低穩定性的新結構富勒烯的可能性。該研究成果發表在《美國化學會志》上。  富勒烯結構中最為特殊的性質是其碳籠

    化學所在有機小分子光伏材料研究方面取得系列進展

      有機太陽能電池材料分為小分子和高分子兩種,目前效率最高的是高分子給體與富勒烯受體共混體系。然而,高分子的分子結構、分子量、純度不確定,會帶來不同批次的材料性能間有差異,因而有可能在將來導致工業化生產時批次的不穩定性。和聚合物材料相比,有機小分子太陽能電池材料則具有確定的分子結構和

    北大有機高分子太陽能電池材料和器件研究取得系列進展

        太陽能是人類最安全、最綠色、最理想的可再生潔凈能源。有機高分子太陽電池利用有機高分子材料制備器件以實現光電轉換,可通過溶液加工技術制成柔性的大面積器件,具有重量輕、低成本、便攜等優點。有機高分子太陽電池是國際前沿交叉研究領域,具有廣闊應用前景。   有機太陽能電池活性層結構主要有本體異質結

    化學所通過分子能級的精準調控實現有機光伏效率新突破

      聚合物太陽能電池作為新興的前沿研究領域,其能量轉化效率的不斷攀升主要得益于光活性層材料(包括電子給體與電子受體材料)的設計和開發。其中,通過分子結構的理性設計來調制材料的前線軌道能級是一種十分有效的提高器件開路電壓的策略。近年,在中國科學院、國家自然科學基金委、北京市科委和中國科學院化學研究所的

    新材料有望使有機太陽能電池效率更高應用更廣

      納米材料研究人員已經提出了一種使有機太陽能電池更具彈性的方法,并將其效率提高10%以上。圖片來源于網絡  紐約大學Tandon工程學院的一個研究團隊認為,這一開發可以使太陽能在各種應用中更加有用,例如成為電動汽車的一部分,變成可穿戴電子產品或縫合成背包,為移動手機充電。  研究人員表示,大多數有

    有機光伏機理研究取得重要進展

    ?(a)非富勒烯有機太陽能電池共混膜中形貌與(b)光物理路徑圖? 山東大學供圖近日,山東大學前沿交叉科學青島研究院物質創制與能量轉換科學研究中心教授高珂在有機光伏電池的分子晶態與雙生載流子途徑等機理研究方面取得新進展,相關研究成果分別發表在國際學術期刊《先進材料》《 大分子快訊》。有機光伏電池(OP

    美容界“抗衰之王”富勒烯讓鉆石不再易碎

    科技日報北京11月29日電 (實習記者張佳欣)據近日發表在《自然》雜志上的論文,來自中國、德國和美國的一個研究小組開發出一種制造不易碎鉆石的方法,造出了新形態的鉆石——次晶金剛石。先前研究表明,鉆石是已知的最堅硬的材料,但它卻很脆,容易被切割甚至粉碎。這是因為它們的原子結構是有序的。多年來,科學家們

    美容界“抗衰之王”富勒烯讓鉆石不再易碎

      據近日發表在《自然》雜志上的論文,來自中國、德國和美國的一個研究小組開發出一種制造不易碎鉆石的方法,造出了新形態的鉆石——次晶金剛石。  先前研究表明,鉆石是已知的最堅硬的材料,但它卻很脆,容易被切割甚至粉碎。這是因為它們的原子結構是有序的。多年來,科學家們一直試圖合成既保持硬度、又不那么脆的鉆

    納米尺度富勒烯電子器件可自行制冷

      近日,美國伊利諾伊大學研究人員宣布,他們用原子力顯微鏡探針檢測了與富勒烯(石墨單原子層)接觸點的熱電效應,首次發現富勒烯晶體管在納米尺度具有自行制冷效應,能降低自身溫度。該研究成果發表在4月3日網絡版的《自然·納米技術》雜志上。   計算機芯片的速度和尺寸大小受制于散熱效果。電流通過設備材料由

    我國首條噸級富勒烯生產線投產

      近日,由內蒙古碳谷科技有限公司創建的國內首條噸級富勒烯生產線在內蒙古呼和浩特市正式投產。據了解,富勒烯是1985年天文學家在研究宇宙星云構成時意外發現的。11年后,這3位來自美國和英國的科學家因發現富勒烯獲得諾貝爾獎。如今,富勒烯與碳納米管和石墨烯已成為碳納米材料家族的3大代表。  “最常見的富

    鋰電池碳基材料富勒烯的應用分析

      富勒烯的結構與石墨類似,是單質碳被發現的第三種同素異形體,任何存在于球狀或橢球狀結構中的碳元素組成的物質都可稱為富勒烯,最常見的富勒烯是C60,由60個碳原子組成,即20個六元環和12個五元環連接。因富勒烯結構穩定和性質獨特,廣泛應用在許多領域,如潤滑劑、太陽能電池、化妝品及軍用激光防護眼鏡等。

    寧波材料所有機太陽能電池研究取得進展

      目前,不可再生化石燃料的大量使用造成的能源危機和環境污染問題日趨嚴重,綠色環保的太陽能電池技術隨之得到廣泛重視。其中,有機太陽能電池具有柔性、半透明、易于大面積制備和色彩絢爛等優點,在滿足人們電力需求的同時,更能帶來愉快的視覺享受,在便攜式電子產品、光伏建筑等領域具有很強的應用潛力,已成為當前新

    寧波材料所有機太陽能電池研究取得進展

      目前,不可再生化石燃料的大量使用造成的能源危機和環境污染問題日趨嚴重,綠色環保的太陽能電池技術隨之得到廣泛重視。其中,有機太陽能電池具有柔性、半透明、易于大面積制備和色彩絢爛等優點,在滿足人們電力需求的同時,更能帶來愉快的視覺享受,在便攜式電子產品、光伏建筑等領域具有很強的應用潛力,已成為當前新

    中美合成最小碳納米管結構富勒烯C90

    論文發表于德國《應用化學》;引起國際科學界廣泛關注   近日,浙江大學和美國加利福尼亞大學科研人員成功合成世界上最小碳納米管結構的富勒烯C90,成果發表在2010年49卷第1期的德國《應用化學》上,被評為該期刊的“熱點”論文,引起了國際科學界的廣泛關注。   富勒烯和碳納米管由于其獨特的結構和性

    化學所新型近紅外pi分子材料設計及應用獲進展

      新型有機pi-分子材料的設計及其在有機場效應晶體管和有機太陽能電池中的應用是有機電子學的重要研究內容。近紅外pi-分子材料具有寬吸收光譜和低能量帶隙的特點,在光電器件中具有獨特的性能。在中國科學院戰略性B類先導科技專項支持下,中科院化學研究所有機固體院重點實驗室研究員李韋偉課題組研究人員發展了一

    中國科大提出全新內嵌金屬富勒烯形成機制

      中國科學技術大學教授楊上峰課題組合成了兩種新型的基于過渡金屬釩的內嵌金屬富勒烯,結合這兩種分子結構上的關聯性,提出一種全新的內嵌金屬富勒烯形成機制——自驅動單原子碳注入機制,在內嵌金屬富勒烯領域取得新進展。研究成果近日發表于美國《國家科學院院刊》。審稿人認為,“這兩種金屬富勒烯的結構很新穎”。 

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频