活體多光譜熒光成像應用實例(三)
總結活體多光譜熒光成像可以扣除組織自體熒光和進行多種熒光團成像。這可以增強信噪比并進行先進的多重熒光成像,實現更強大的研究設計。參考文獻[1] Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008). Multiplexing with multispectral imaging: from mice to microscopy. ILAR J 49-78.[2] Frangioni, JV (2003). In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol.;7:626-34.[3] Weissleder R, Ntziachristos V (2003). Shedding light onto live molecular targets. Nat Med. 9( 1......閱讀全文
活體多光譜熒光成像應用實例(三)
總結 活體多光譜熒光成像可以扣除組織自體熒光和進行多種熒光團成像。這可以增強信噪比并進行先進的多重熒光成像,實現更強大的研究設計。 參考文獻 [1] Levenson RM, Lynch DT, Kobayashi H, B
活體多光譜熒光成像應用實例(二)
優化和多光譜建模啟始成像和研究設置包括用于優化設置和建模的初始步驟:1- 熒光團成像(體外)2- 生成光譜模型3- 體內模型評估首先,我們建議您使用上文確定的濾光片對稀釋后的熒光團進行成像。一旦采集到圖像,通過將高斯曲線擬合到熒光團的實驗曲線來創建光譜曲線(圖7)。應用光譜模型 一旦光譜曲線實現了優
活體多光譜熒光成像應用實例(一)
前言傳統的活體光學熒光成像(FLI)采用一個激發濾光片和一個發射濾光片。這對于區分靶向信號、可能存在的報告基因信號以及自體熒光組織信號而言有著諸多局限。多光譜(MS)FLI 采用多個激發濾光片和單個發射濾光片,或單個激發濾光片搭配多個發射濾光片,可以產生獨特的熒光區域或材料的光譜曲線。(1)因此,圖
FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像...
FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像是什么1.?多光譜熒光的發現及特性二十世紀八九十年代,植物生理學家對植物活體熒光——主要是葉綠素熒光研究不斷深入。激發葉綠素熒光主要是使用紅光、藍光或綠光等可見光。當科學家使用UV紫外光對植物葉片進行激發,發現植物產生了具備4個特征性波峰的熒
植物多光譜熒光成像系統多激發光、多光譜熒光成像技術
多激發光、多光譜熒光成像技術:通過光學濾波器技術,僅使特定波長的光(激發光)到達樣品以激發熒光,同時僅使特定波長的激發熒光到達檢測器。不同的熒光發色團(如葉綠素或GFP綠色熒光蛋白等)對不同波長的激發光“敏感”并吸收后激發出不同波長的熒光,根據此原理可以選配2個或2個以上的激發光源、濾波輪及相應
植物多光譜熒光成像系統的廣泛應用
植物多光譜熒光成像系統可用于葉綠素熒光動態成像分析、多激發光光合效率成像分析、紫外光激發多光譜熒光成像分析、PAR吸收與NDVI(植物光譜反射指數)成像分析、GFP/YFP穩態熒光成像等,全面、非接觸、高靈敏度反映植物生理生態、脅迫生理與抗性、光合效率等。Fluorcam植物多光譜熒光成像系統廣
FluorCam多光譜熒光成像技術介紹
FluorCam多光譜熒光成像系統作為FluorCam葉綠素熒光成像系統的最高級型號,是目前唯一有能力實現了一臺儀器上同時完成葉綠素熒光、UV-MCF多光譜熒光、NDVI歸一化植被指數以及GFP、YFP、BFP、RFP、CFP、DAPI等熒光蛋白與熒光染料的成像分析功能。同時也可以加裝RGB真彩成像
FluorCam多光譜熒光成像技術應用案例——植物干旱響應表...
FluorCam多光譜熒光成像技術應用案例——植物干旱響應表型研究植物對干旱的響應過程非常復雜,同時植物也有多樣的應答機制來回避和耐受干旱脅迫并維持生長。光合系統被認為是對干旱極為敏感的,因此FluorCam葉綠素熒光成像系統從問世起就被廣泛應用于植物干旱脅迫的研究。美國懷俄明大學將蕪菁Brassi
FluorCam多光譜熒光成像技術應用案例——藻類病害表型研究
2019年中國海洋大學裝備了國內首套海洋生物表型組學光學成像分析系統,這一系統包含以下子系統:lFKM多光譜熒光動態顯微成像系統lFluorCam多光譜熒光成像系統lFluorCam葉綠素熒光成像系統lSpecim IQ?高光譜成像儀lMC1000 8通道藻類培養監測系統? ? ? ? ? ? ?
活體成像技術應用
動物模型已經成為癌癥,動脈粥樣硬化,神經系統疾病(如阿爾茨海默氏病)和傳染病研究中不可或缺的手段,而在這個過程中,很多情況下下需要使用到活體成像技術。原因是活體城鄉技術可用于研究觀測特異性細胞、基因和分子的表達或者相互作用關系,追蹤靶細胞,藥物,從分子和細胞水平對藥物療效進行成像,從病理水平評估