補體激活途徑都有什么?
①經典途徑是以結合抗原后的IgG或IgM類抗體為主要激活劑,補體C1~C9共11種成分全部參與了激活途徑。除了抗原抗體復合物外,還有許多因子可激活此途徑,如非特異性凝集的Ig、細菌脂多糖、一些RNA腫瘤病毒、雙鏈DNA等。②替代途徑又稱旁路途徑。由病原微生物等細胞壁成分提供接觸面直接激活補體C3,然后完成C5~C9的激活過程。替代途徑的激活物主要是細胞壁成分,如脂多糖、肽糖苷及酵母多糖等。③MBL途徑由急性炎癥期產生的甘露糖結合凝集素(MBL)與病原體結合后啟動激活。......閱讀全文
補體激活途徑都有什么?
①經典途徑是以結合抗原后的IgG或IgM類抗體為主要激活劑,補體C1~C9共11種成分全部參與了激活途徑。除了抗原抗體復合物外,還有許多因子可激活此途徑,如非特異性凝集的Ig、細菌脂多糖、一些RNA腫瘤病毒、雙鏈DNA等。②替代途徑又稱旁路途徑。由病原微生物等細胞壁成分提供接觸面直接激活補體C3,然
補體激活途徑
①經典途徑是以結合抗原后的IgG或IgM類抗體為主要激活劑,補體C1~C9共11種成分全部參與了激活途徑。除了抗原抗體復合物外,還有許多因子可激活此途徑,如非特異性凝集的Ig、細菌脂多糖、一些RNA腫瘤病毒、雙鏈DNA等。②替代途徑又稱旁路途徑。由病原微生物等細胞壁成分提供接觸面直接激活補體C3,然
補體激活途徑介紹
補體激活途徑之一。指微生物或外源異物直接激活C3,在B因子、D因子和備解素參與下,形成C3轉化酶與C5轉化酶,最終形成攻膜復合物。
補體的激活途徑分別有什么?
①經典途徑是以結合抗原后的IgG或IgM類抗體為主要激活劑,補體C1~C9共11種成分全部參與了激活途徑。除了抗原抗體復合物外,還有許多因子可激活此途徑,如非特異性凝集的Ig、細菌脂多糖、一些RNA腫瘤病毒、雙鏈DNA等。②替代途徑又稱旁路途徑。由病原微生物等細胞壁成分提供接觸面直接激活補體C3,然
補體經典激活途徑介紹
補體系統的經典激活途徑是由抗原-抗體復合物(即免疫復合物)結合C1q啟動補體激活的補體活化途徑。一般在感染后期發揮作用。經典激活途徑主要由抗原-抗體復合物激活,由C3轉化酶C4b2a與C5轉化酶C4b2a3b介導,經由一系列級聯放大反應激活補體系統,形成攻膜復合體,造成帶有抗原的細胞質膜溶解破裂,細
補體系統的激活途徑
補體系統各成分通常多以非活性狀態存在于血漿之中,當其被激活物質活化之后,才表現出各種生物學活性。補體系統的激活可以從C1開始;也可以越過C1、 C2、C4,從C3開始。前一種激活途徑稱為經典途徑(classical pathway)或替代途徑。“經典”,“傳統”只是意味著,人們早年從抗原體復合物激活
補體系統活化激活途徑
1.經典途徑: 經典途徑是以結合抗原后的IgG或IgM類抗體為主要激活劑,補體C1~C9共11種成分全部參與的激活途徑。除了抗原抗體復合物外,還有許多因子可激活此途徑,如非特異性凝集的Ig、細菌脂多糖、一些RNA腫瘤病毒、雙鏈DNA.胰蛋白酶、纖溶酶、尿酸鹽結晶、C-反應蛋白等。經典活化途徑可人為地
補體系統的活化激活途徑
補體系統的活化激活途徑:補體系統的各組分在體液中通常以非活性狀態、類似酶原的形式存在,當受到一定因素激活,才表現出生物活性。補體的激活途徑主要有兩種,即經典途徑和替代途徑,此外尚有MBL(甘露糖結合凝集素)途徑。經典途徑和替代途徑兩種途徑的啟動過程不一致,但經典途徑的激活可以導致替代途徑的活化,反之
補體激活途徑的主要異同點
補體兩條激活途徑:、一是經典途徑,抗原抗體復合物激活補體1和補體4、2,形成補體3轉化酶,然后是補體5、6、7、8、9的激活,最后導致靶細胞溶解。 二是補體3傍路途徑,是細菌的內毒素和其它有關因子,直接激活補體3,再是補體5、6、7、8、9的激活,最后導致靶細胞溶解。 不同點是路徑不一樣,傍路途徑可
關于補體系統的激活途徑說明
補體系統各成分通常多以非活性狀態存在于血漿之中,當其被激活物質活化之后,才表現出各種生物學活性。補體系統的激活可以從C1開始;也可以越過C1、 C2、C4,從C3開始。前一種激活途徑稱為經典途徑(classical pathway)或替代途徑。“經典”,“傳統”只是意味著,人們早年從抗原體復合物激活
補體系統的活化激活途徑生化檢驗
補體系統的活化激活途徑:補體系統的各組分在體液中通常以非活性狀態、類似酶原的形式存在,當受到一定因素激活,才表現出生物活性。補體的激活途徑主要有兩種,即經典途徑和替代途徑,此外尚有MBL(甘露糖結合凝集素)途徑。經典途徑和替代途徑兩種途徑的啟動過程不一致,但經典途徑的激活可以導致替代途徑的活化,反之
什么是補體活化途徑?
補體活化途徑(activating pathway of complements),也稱作補體系統。補體的各成分為抗原抗體復合體以及其他成分,離子等相繼會合連鎖被活化,結果引起免疫細胞溶解(immune cytolysis)和免疫溶血(immune haemolysis),也就是細胞和細菌、紅血球等
旁路激活途徑與經典激活途徑不同之處
旁路激活途徑與經典激活途徑不同之處在于激活是越過了C1、C4、C2三種成分,直接激活C3繼而完成C5至C9各成分的連鎖反應,還在于激活物質并非抗原抗體復合物而是細菌的細胞壁成分—脂多糖,以及多糖、肽聚糖、磷壁酸和凝聚的IgA和IgG4等物質。旁路激活途徑在細菌性感染早期,尚未產生特異性抗體時,即可發
補體系統激活的識別階段是什么?
C1與抗原抗體復合物中免疫球蛋的補體結合點相結合至C1酯酶形成的階段。 C1是由三個單位Clq、Clr和Cls依賴Ca+結合成的牢固的非活性大分子。 Clq:Clq分子有6個能與免疫球蛋白分子上的補體結合點相結合的部位。當兩個以上的結合部位與免疫球蛋白分子結合時,即Clq橋聯免疫球蛋白之后,
補體的活化途徑
1.經典途徑:以抗原-抗體復合物結合C1q啟動激活,是抗體介導的體液免疫應答的主要效應方式。2.MBL途徑:是甘露聚糖結合凝集素(MBL)結合至細菌啟動的途徑。其誘導物或激活劑是機體的炎癥反應急性期時相性蛋白產生的MBL和C反應蛋白等,后者與病原體結合而啟動繞過C1的MBL途徑。3.旁路途徑:是通過
補體系統的激活(一)
?? 補體系統各成分通常多以非活性狀態存在于血漿之中,當其被激活物質活化之后,才表現出各種生物學活性。補體系統的激活可以從C1開始;也可以越過C1、C2、C4,從C3開始。前一種激活途徑稱為經典途徑(classical pathway)或替代途徑。“經典”,“傳統”只是意味著,人們早年從抗原
補體激活信號通路研究背景
補體系統是一種酶級聯反應,是血液和細胞表面蛋白質的集合,有助于抗體清除生物體病原體的能力。補體系統由30種不同的蛋白質組成,包括血清蛋白、漿膜蛋白和細胞膜受體,是先天免疫系統的重要組成部分。一些補體蛋白與免疫球蛋白或細胞膜成分結合。另一些是酶原,當被激活時,會切割一個或多個其他補體蛋白,并啟動進一步
補體系統的激活(二)
? (一)生理情況下的準備階段 在正常生理情況下,C3與B因子、D因子等相互作用,可產生極少量的C3B和C3bBb(旁路途徑的C3轉化酶),但迅速受H因子和I因子的作用,不再能激活C3和后續的補體成分(圖3-4,左)。只有當H因子和I因子的作用被阻擋之際,旁路途徑方得以激活(圖3-4,右)。 C
補體活化途徑分類介紹
補體活化途徑(activating pathway of complements),也稱作補體系統。補體的各成分為抗原抗體復合體以及其他成分,離子等相繼會合連鎖被活化,結果引起免疫細胞溶解(immune cytolysis)和免疫溶血(immune haemolysis),也就是細胞和細菌、紅血球等
Caspase級聯的激活途徑
Caspase級聯由兩條不同的途徑激活:一條來自細胞表面,另一條來自線粒體,導致Caspase活化的途徑因凋亡刺激的不同而不同。
T細胞依賴途徑激活
借助T細胞激活B細胞的抗原被稱為T細胞依賴性(TD)抗原,包括外源蛋白質。這樣命名的是因為它們在缺乏T細胞的生物體中無法誘導體液免疫應答。盡管通過T細胞依賴途徑所產生的抗體比非T細胞依賴途徑產生的抗體具有更高的親和力和更多的功能,但B細胞對這些抗原的應答往往需要幾天的時間。一旦BCR結合TD抗原,抗
纖溶酶的激活途徑
纖溶酶原有內源性及外源性兩條激活途徑。①內源性激活:指血液中存在有能使纖溶酶原激活的活化因子,它可能來自靜脈或微靜脈的內皮細胞,其活性在上肢靜脈較之下肢靜脈高,這是下肢靜脈血栓比上肢靜脈多的原因之一。此外在血液中還存在一種活化因子原,當機體的凝血反應一旦被啟動,激活的凝血因子之一——凝血因子Ⅺ除參與
纖溶酶的激活途徑
纖溶酶原有內源性及外源性兩條激活途徑。①內源性激活:指血液中存在有能使纖溶酶原激活的活化因子,它可能來自靜脈或微靜脈的內皮細胞,其活性在上肢靜脈較之下肢靜脈高,這是下肢靜脈血栓比上肢靜脈多的原因之一。此外在血液中還存在一種活化因子原,當機體的凝血反應一旦被啟動,激活的凝血因子之一——凝血因子Ⅺ除參與
補體激活生物學活性的簡介
細胞溶解僅是補體激活諸多生物活性中的一種.它不是補體激活最重要的現象.在臨床上細胞溶解可見于夜間陣發性血紅蛋白尿患者,這是一種很少見的疾病,與衰變加速因子(DAF),同種限制因子(HRF)和CD59這些膜蛋白缺少有關.
補體激活生物學活性的合成
補體受體存在于多種細胞.CR1(CD35),膜輔助因子蛋白(MCP,CD46)和DAF(CD55)對C3b的分解起調節作用.HRF和CD59防止在自身細胞形成攻膜復合物.CR1(CD35)在清除免疫復合物中起著作用,CR2(CD21)調節著B細胞的功能(抗體的產生),并且它也是EB病毒的受體.C
補體激活生物學活性的作用
C3a和C5a有過敏毒素活性,而C4a只具有微弱的過敏毒素活性.過敏毒素活性可增加血管通透性,平滑肌收縮和肥大細胞脫顆粒.過敏毒素受過敏毒素滅活劑(N羧肽酶)的調節,這種酶可在數秒鐘內除去羧端精氨酸. 趨化性是將細胞吸引至炎癥區,C5a同時具有過敏毒素和趨化活性,而C3a和C4a無趨化性.也有
糖原的合成途徑分別都有哪些?
(1)葡萄糖通過α-1,4糖苷鍵和α-1,6糖苷鍵相連而成的具有高度分支的聚合物。(2)糖原主要分為肝糖原和肌糖原;(3)糖原是可以迅速動用的葡萄糖儲備。肌糖原分解可供肌肉收縮的需要,肝糖原分解提供血糖。短期饑餓后,血糖濃度的恒定主要靠肝糖原的分解。肝臟有葡萄糖-6-磷酸酶使肝糖原分解,肌肉組織缺乏
什么是補體?
補體是一種血清蛋白質,存在于人和脊椎動物血清及組織液中,不耐熱,活化后具有酶活性、可介導免疫應答和炎癥反應。可被抗原-抗體復合物或微生物所激活,導致病原微生物裂解或被吞噬。可通過三條既獨立又交叉的途徑被激活,即經典途徑、旁路途徑和凝集素途徑。
補體旁路途徑溶血活性的測
原理兔紅細胞不經致敏可激活人補體旁路途徑,導致兔紅細胞溶解。在反應系統中加入乙二醇雙氨基四乙酸(ethyleneglycol-bis- aminotetracetate,EGTA)可和血漿Ca2+螯合,EGTA與Mg2+結合能力很弱,故經典途徑被封閉。根據兔紅細胞的溶血程度,可測定補體旁路途徑的
Nature子刊:激活棕色脂肪的新途徑
哺乳動物(包括人類和小鼠)具有兩種截然不同的脂肪,白色脂肪和棕色脂肪。白色脂肪負責儲存多余的熱能以備不時之需,棕色脂肪細胞會燃燒脂肪將其轉變為熱量。白色脂肪過多容易形成肥胖,而肥胖會引發二型糖尿病等多種代謝問題。 人們普遍認為,激活棕色脂肪可以有效改善肥胖癥患者的代謝健康。馬普研究所和科隆大學