關于跳躍基因的基本介紹
跳躍基因或轉座子:一段可以從原位上單獨復制或斷裂下來,環化后插入另一位點,并對其后的基因起調控作用的DNA序列。 美國約翰斯·霍普金斯大學的科學家已經成功地將一種普通的人類"跳躍基因"轉化成一種運動速度比普通老鼠和人類細胞中的跳躍基因快幾百倍的超級跳躍基因。......閱讀全文
關于跳躍基因的基本介紹
跳躍基因或轉座子:一段可以從原位上單獨復制或斷裂下來,環化后插入另一位點,并對其后的基因起調控作用的DNA序列。 美國約翰斯·霍普金斯大學的科學家已經成功地將一種普通的人類"跳躍基因"轉化成一種運動速度比普通老鼠和人類細胞中的跳躍基因快幾百倍的超級跳躍基因。
概述跳躍基因的基本應用
此前,美國明尼蘇達州的科研人員報道說,睡美人tranposon(SleepingBeautytranposon,SB-Tn)系統——一種能夠避免病毒轉移基因技術缺陷的基因治療技術在實驗室中能夠矯正導致鐮狀細胞貧血病(SCD)的基因缺陷。 在這項發表在6月12日的ACS’Biochemistry
跳躍基因的應用
要想將一個基因從A位點轉移到B位點,研究人員和基因治療專家只有兩個選擇:使用一種能有效地將感興趣基因輸送到細胞中的病毒;質粒,一種能夠做同樣工作的經加工的DNA環。問題是,病毒是感染性的,并且一些類型的病毒偶爾會到達癌基因附近的靶標基因組,從而增加癌癥風險。質粒不會有這種風險,但是它們卻不能在細胞中
跳躍基因的應用
此前,美國明尼蘇達州的科研人員報道說,睡美人tranposon(SleepingBeautytranposon,SB-Tn)系統——一種能夠避免病毒轉移基因技術缺陷的基因治療技術在實驗室中能夠矯正導致鐮狀細胞貧血病(SCD)的基因缺陷。在這項發表在6月12日的ACS’Biochemistry的研究中
跳躍基因的定義
是那些能夠進行自我復制,并能在生物染色體間移動的基因物質。它們具有擾亂被介入基因組成結構的潛在可能性,并被認為是導致生物基因發生漸變(有時候是突變),并最終促使生物進化的根本原因。雖然像酵母這樣的生物只有幾十種跳躍基因,但哺乳動物體內一般卻含有幾十萬數量的跳躍基因DNA,因此很難判斷在哪里或是什么時
跳躍基因的定義
是那些能夠進行自我復制,并能在生物染色體間移動的基因物質。它們具有擾亂被介入基因組成結構的潛在可能性,并被認為是導致生物基因發生漸變(有時候是突變),并最終促使生物進化的根本原因。雖然像酵母這樣的生物只有幾十種跳躍基因,但哺乳動物體內一般卻含有幾十萬數量的跳躍基因DNA,因此很難判斷在哪里或是什么時
跳躍基因的應用
要想將一個基因從A位點轉移到B位點,研究人員和基因治療專家只有兩個選擇:使用一種能有效地將感興趣基因輸送到細胞中的病毒;質粒,一種能夠做同樣工作的經加工的DNA環。問題是,病毒是感染性的,并且一些類型的病毒偶爾會到達癌基因附近的靶標基因組,從而增加癌癥風險。質粒不會有這種風險,但是它們卻不能在細胞中
什么是跳躍基因的?
跳躍基因或轉座子:一段可以從原位上單獨復制或斷裂下來,環化后插入另一位點,并對其后的基因起調控作用的DNA序列。?
簡述跳躍基因的應用
要想將一個基因從A位點轉移到B位點,研究人員和基因治療專家只有兩個選擇:使用一種能有效地將感興趣基因輸送到細胞中的病毒;質粒,一種能夠做同樣工作的經加工的DNA環。 問題是,病毒是感染性的,并且一些類型的病毒偶爾會到達癌基因附近的靶標基因組,從而增加癌癥風險。質粒不會有這種風險,但是它們卻不能
簡述跳躍基因的定義
是那些能夠進行自我復制,并能在生物染色體間移動的基因物質。它們具有擾亂被介入基因組成結構的潛在可能性,并被認為是導致生物基因發生漸變(有時候是突變),并最終促使生物進化的根本原因。雖然像酵母這樣的生物只有幾十種跳躍基因,但哺乳動物體內一般卻含有幾十萬數量的跳躍基因DNA,因此很難判斷在哪里或是什
基因跳躍定雌雄
女人和男人、母雞和公雞、母牛和公牛——性別相互區分似乎是大自然的基礎,但這對大多數植物來說是一種奇怪的現象。現在,科學家已經弄明白了草莓是如何在雄性和雌性間轉變的。草莓的性染色體比其他已知的植物或動物更年輕。這種不同尋常的“跳躍”基因可能意味著,植物性別差異的變化比之前認為的要快。 未參與該研
跳躍基因的基因治療應用
此前,美國明尼蘇達州的科研人員報道說,睡美人tranposon(SleepingBeautytranposon,SB-Tn)系統——一種能夠避免病毒轉移基因技術缺陷的基因治療技術在實驗室中能夠矯正導致鐮狀細胞貧血病(SCD)的基因缺陷。在這項發表在6月12日的ACS’Biochemistry的研究中
關于基因擴增的基本介紹
基因擴增(gene amplification)是指某一個特定基因的拷貝數選擇性地增加而其它基因的拷貝數并未按比例增加的過程。 基因擴增產生的可能原因: 1)由錯誤的DNA復制和修復導致的基因復制; 2)自私遺傳元件偶然捕獲而導致的DNA重復; 3)人工聚合酶鏈式反應(PCR)擴增。
關于結構基因的基本介紹
結構基因是編碼蛋白質或RNA的基因。細菌的結構基因一般成簇排列,多個結構基因受單一啟動子共同控制,使整套基因或都表達或者都不表達。結構基因編碼大量功能各異的蛋白質,其中有組成細胞和組織器官基本成分的結構蛋白、有催化活性的酶和各種調節蛋白等。
關于標記基因的基本介紹
標記基因,原本是基因工程的專屬名詞,但是它已經成為一種基本的實驗工具,廣泛應用于分子生物學、細胞生物學、發育生物學等方面的研究。 標記基因是一種已知功能或已知序列的基因,能夠起著特異性標記的作用。在基因工程意義上來說,它是重組DNA載體的重要標記,通常用來檢驗轉化成功與否;在基因定位意義上來說
關于src基因的基本介紹
src基因(sarcoma gene)即雞肉瘤病毒(RSV)基因組中的基因,可使雞產生肉瘤。是第一個鑒定的病毒癌基因。 1970年,Peter Vogt分離到一種Rous 病毒的突變體,該突變病毒能夠感染細胞并進行復制,但是不能引起細胞轉化并致癌。由于該突變體,只是喪失了將正常細胞轉化為癌細胞
關于基因起源的基本介紹
基因就是編譯氨基酸的密碼子,因此,密碼子的起源就是基因的起源。除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定并非是隨機的結果,對此有以下的可能解釋: [6] 韋斯(Carl Richard Woese)認
關于自殺基因的基本介紹
自殺基因(suicide gene),是指將某些病毒或細菌的基因導入靶細胞中,其表達的酶可催化無毒的藥物前體轉變為細胞毒物質,從而導致攜帶該基因的受體細胞被殺死,此類基因稱為自殺基因。 應用自殺基因常用來治療腫瘤和感染性疾病。例如將在肝癌細胞中可表達AF基因的調控區與水痘一帶狀瘡疹病毒中的胸苷
關于基因剪接的基本介紹
基因剪接是通過一些酶學操作使一條DNA分子與另一條DNA分子相連。即在mRNA成熟期,切除基因的內含子,連接基因的外顯子的過程,稱為基因剪接。而天然基因的某些片段被合成的DNA鏈所取代或連成整體的過程稱為基因剪輯。一個基因為它的等位基因所替換,而其他基因則保持不變稱為基因置換。
關于基因家族的基本介紹
基因家族(gene family),是來源于同一個祖先,由一個基因通過基因重復而產生兩個或更多的拷貝而構成的一組基因,它們在結構和功能上具有明顯的相似性,編碼相似的蛋白質產物, 同一家族基因可以緊密排列在一起,形成一個基因簇,但多數時候,它們是分散在同一染色體的不同位置,或者存在于不同的染色體上
關于基因調控的基本介紹
生物體內控制基因表達的機制。基因表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在3個水平上,即: ①DNA修飾水平、RNA轉錄的調控、和mRNA翻譯過程的控制; ②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的; ③多細胞
關于基因轉錄的基本介紹
基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。 如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白
關于重疊基因的基本介紹
重疊基因是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,20世紀50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而并不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基
綿羊跳躍病病毒基本特性
跳躍病即綿羊傳染腦脊髓膜炎,因病羊共濟失調,呈現特異的跳躍步樣,故有此稱,1807年,跳躍病最早報道于蘇格蘭。跳躍病發生于蘇格蘭、愛爾蘭、英國北部、法國和蘇聯某些地區。該病由綿羊跳躍病病毒(Louping ill virus)感染引起。 跳躍病病毒的直徑約15~20nm。主要存在于病畜的中樞神
Science:跳躍基因如何找到目標?
為了了解轉座子如何形成基因組,極其重要的是,要發現它們定向整合(targeted integration)背后的機制。最近,來自法國國家健康與醫學研究院病理學實驗室的研究人員,與法國CEA-Saclay和美國一個實驗室合作,確定了兩種蛋白質之間的相互作用,是一個轉座子整合到酵母基因組中一個特定區
《科學》焦點文章:細菌基因跳躍
來自美國奎格文特研究所(J. Craig Venter Institute)基因組研究院,羅徹斯特大學(University of Rochester),New England Biolabs公司,華盛頓大學醫學院等處的研究人員發現生活在昆蟲,線蟲,以及其它真核生物內的細菌實際上比以往所認為的更頻繁
細菌基因跳躍轉移機理揭開
一種本來沒有耐藥性的細菌如何通過“竊取”其他細菌具有耐藥性的DNA(脫氧核糖核酸)片段,從而演變成耐藥菌株,這是一個長期困擾生物學家的難題。據美國物理學家組織網報道,美國北卡羅來納德漢姆國家進化綜合中心的研究人員通過研究30多種可導致包括肺炎、腦膜炎、胃潰瘍和瘟疫等疾病在內的致病細
關于病毒癌基因的基本介紹
病毒癌基因(viral oncogene):是存在于致癌DNA病毒和一部分逆轉錄病毒基因組中能使靶細胞發生惡性轉化的基因。它不編碼病毒結構成分,對病毒無復制作用,但是當受到外界的條件激活時可產生誘導腫瘤發生的作用。
關于基因庫的基本介紹
基因庫(gene pool)是一個群體中所有個體的全部基因的總和。有性生殖支撐了一種獨特的基因庫構建與運行模式,減數分裂通過修修補補、程序性突變(如復制錯誤、缺失、插入、重復等,這些與輻射誘變等比較,相對溫和)等增加種群內基因的多樣性以及等位基因的多態性,并分散保存于種群之中(種群規模越大,容納
關于加工假基因的基本介紹
有一類假基因除了一般的特征之外,還有一些其他的特征暗示著它們的形成與mRNA有關: ①在假基因中完全缺少在相應的正常基因中存在的內含子順序; ②在假基因的3'末端有一段連貫的脫氧腺嘌呤核苷酸; ③有些假基因與相應的正常基因在順序組成上的相似性只限于相應的mRNA的3'末端之