<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    端粒、線粒體、炎癥“關系匪淺”衰老三標志共同作用可防癌

    隨著年齡的增長,染色體的端粒逐漸縮短。美國索爾克研究所的科學家們發現,當端粒變得非常短時,它們會與“細胞的發電廠”線粒體進行交流。這種交流會觸發一組復雜的信號通路,并引發炎癥反應,從而破壞可能癌變的細胞。相關研究8日發表在《自然》雜志上,可能會帶來預防和治療癌癥的新方法,同時有助設計出更好的干預措施來抵消衰老的有害后果。當端粒縮短到無法再保護染色體免受損壞的程度時,會發生一種被稱為“危機”的過程,細胞就會死亡。這種自然過程其實是有益的,其去除了端粒非常短的以及基因組不穩定的細胞,并且被認為是防止癌癥形成的強大屏障。研究人員之前發現,處于危機中的細胞會通過自噬過程被清除,在該過程中,身體也會自行清除受損細胞。在新研究中,該團隊調查了在端粒極短的危機期間,自噬依賴性細胞死亡程序是如何被激活的。他們使用一種稱為成纖維細胞的人類皮膚細胞進行基因篩選,發現了相互依賴的免疫感應和炎癥信號通路。這個通路對于危機期間的細胞死亡至關重要,類似于免......閱讀全文

    端粒、線粒體、炎癥“關系匪淺” 衰老三標志共同作用可防癌

    隨著年齡的增長,染色體的端粒逐漸縮短。美國索爾克研究所的科學家們發現,當端粒變得非常短時,它們會與“細胞的發電廠”線粒體進行交流。這種交流會觸發一組復雜的信號通路,并引發炎癥反應,從而破壞可能癌變的細胞。相關研究8日發表在《自然》雜志上,可能會帶來預防和治療癌癥的新方法,同時有助設計出更好的干預措施

    線粒體損傷如何點燃“自體炎癥之火”?

    當受到壓力、受損或功能失調時,線粒體會將氧化和分裂的DNA (mtDNA)排出到細胞質(細胞器漂浮在細胞內的液體)中,然后進入血液,引發炎癥。在狼瘡和類風濕性關節炎等自身免疫性疾病中,循環氧化mtDNA的數量與疾病的嚴重程度、突然發作以及患者對治療的反應程度相關。一個困擾該領域的未解問題是,氧化的m

    PNAS:失控的線粒體會引起細胞端粒損傷

      匹茲堡大學希爾曼癌癥中心的研究人員為長期以來的觀點提供了第一個具體證據,即患病的線粒體污染了它們本應提供能量的細胞。  這篇近日發表在PNAS的論文涉及一項因果實驗,目的是啟動線粒體連鎖反應,這種反應會對細胞造成破壞,一直到遺傳水平。圖片來源:Qian et al. (2019), PNAS  

    Nature子刊聚焦端粒酶、炎癥與癌癥

      慢性炎癥現在被視作是許多人類癌癥、自身免疫性疾病、神經退行性疾病和糖尿病等代謝疾病的一個重要病因。而眾所周知端粒為癌細胞提供了無限分裂的能力。近日來自新加坡科技研究局(A*STAR)的科學家們發現了三者之間的重要關聯,證實在人類癌癥中端粒酶具有發起和維持慢性炎癥的作用。研究結果發表在11 月

    【Nature】線粒體調節NLRP3炎癥小體

    ???線粒體調節NLRP3炎癥小體??? 天然免疫指個體出生時即具備的免疫能力,是抵抗病原微生物感染的第一道防線。天然免疫主要通過模式識別受體(pattern recognition receptor,PRR)來識別病原體相關分子模式(pathogen-associated molecular

    衰老三標志共同作用可防癌

    隨著年齡的增長,染色體的端粒逐漸縮短。美國索爾克研究所的科學家們發現,當端粒變得非常短時,它們會與“細胞的發電廠”線粒體進行交流。這種交流會觸發一組復雜的信號通路,并引發炎癥反應,從而破壞可能癌變的細胞。相關研究8日發表在《自然》雜志上,可能會帶來預防和治療癌癥的新方法,同時有助設計出更好的干預措施

    什么是端粒?端粒的結構特征

    端粒(英文名:Telomere)是存在于真核細胞線狀染色體末端的一小段DNA-蛋白質復合體,端粒短重復序列與端粒結合蛋白一起構成了特殊的“帽子”結構,作用是保持染色體的完整性和控制細胞分裂周期。端粒、著絲粒和復制原點是染色體保持完整和穩定的三大要素。端粒的長度反映細胞復制史及復制潛能,被稱作細胞壽命

    損傷線粒體中NLRP3炎性小體引發炎癥反應

      炎癥是一種機體平衡的生理反應,機體需要炎癥來消滅外來入侵者和刺激物等,但過度的炎癥反應常常會損傷健康細胞,引發機體衰老和慢性疾病發生;為了能有效控制炎癥,免疫細胞就會雇傭一種名為NLRP3炎性小體的分子機器,NLRP3在健康細胞中處于失活狀態,但當細胞中的線粒體因壓力或暴露于細菌毒素而損傷時,N

    “重性精神障礙患者老化加速”之探

      重性精神障礙(SMDs)患者的平均預期壽命較一般人群縮短,即便考慮自殺因素后同樣如此。這一患者群體同時更容易罹患一些“老年病”,如心血管疾病、代謝綜合征、免疫功能紊亂及癡呆。 圖片來源于網絡   老化加速   造成上述現象的原因似乎是多方面的,包括遺傳易感性、早年不良生活事件帶來的

    端粒的概念

    端粒(英文名:Telomere)是存在于真核細胞線狀染色體末端的一小段DNA-蛋白質復合體,端粒短重復序列與端粒結合蛋白一起構成了特殊的“帽子”結構,作用是保持染色體的完整性和控制細胞分裂周期。端粒、著絲粒和復制原點是染色體保持完整和穩定的三大要素。

    什么是端粒?

    端粒(英文名:Telomere)是存在于真核細胞線狀染色體末端的一小段DNA-蛋白質復合體,端粒短重復序列與端粒結合蛋白一起構成了特殊的“帽子”結構,作用是保持染色體的完整性和控制細胞分裂周期。端粒、著絲粒和復制原點是染色體保持完整和穩定的三大要素。端粒的長度反映細胞復制史及復制潛能,被稱作細胞壽命

    關于DNA復制端粒和端粒酶的內容

      在1941年,美籍印度人麥克林托克(Mc Clintock)就提出端粒(telomere)的假說,指出染色體末端必然存在一種特殊結構——端粒。已知染色體端粒的作用至少有2:a.保護染色體末端免受損傷,使染色體保持穩定;b. 與核纖層相連,使染色體得以定位。  弄清楚DNA復制過程之后,在20世紀

    端粒的功能簡介

      穩定染色體末端結構,防止染色體間末端連接,并可補償滯后鏈5'末端在消除RNA引物后造成的空缺。  組織培養的細胞證明,端粒在決定動植物細胞的壽命中起著重要作用,經過多代培養的老化細胞端粒變短,染色體也變得不穩定。  細胞分裂次數越多,其端粒磨損越多,細胞壽命越短。

    端粒的研究應用

      端粒長度的維持是細胞持續分裂的前提條件 [1] 。在旺盛分裂或需要保持分裂潛能的細胞,如生殖細胞,干細胞和大多數癌細胞(~85%)中,端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保證這些細胞中端粒長度的穩定,維持細胞的持續分裂能力。  細胞中有端粒酶的存在并不能保證端粒的延伸

    端粒的結構解析

    端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒

    端粒的結構解析

    端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒

    關于端粒的組成

      端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。  端粒DNA主要功能有:  第一,保護染色體不被核酸酶降解;  第二,防止

    端粒的結構解析

      端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。  

    端粒的結構解析

    端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒

    端粒的結構組成

    端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。端粒DNA主要功能有:第一,保護染色體不被核酸酶降解;第二,防止染色體相互融合;

    端粒DNA主要組成

    端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。端粒DNA主要功能有:第一,保護染色體不被核酸酶降解;第二,防止染色體相互融合;

    一文讀懂免疫細胞衰老的8大機制

      機體衰老是由身體的大多數細胞、組織或器官的逐漸老化引起的,免疫系統也不例外。免疫系統的失調和惡化,即所謂的“免疫衰老”,使老年人對新病原體感染、自身免疫以及慢性非免疫性疾病(包括心血管和神經退行性疾病、癌癥和2型糖尿病)抵抗力減弱。T細胞和B細胞衰老表型免疫細胞衰老機制  隨著步入老年,人體對感

    線粒體基質的線粒體結構

      線粒體基質  線粒體基質是線粒體中由線粒體內膜包裹的內部空間,其中含有參與三羧酸循環、脂肪酸氧化、氨基酸降解等生化反應的酶等眾多蛋白質,所以較細胞質基質黏稠。蘋果酸脫氫酶是線粒體基質的標志酶。線粒體基質中一般還含有線粒體自身的DNA(即線粒體DNA)、RNA和核糖體(即線粒體核糖體)。  線粒體

    EMBO J:單一的線粒體蛋白缺失或會誘發全身性的炎癥反應

      目前研究人員并不清楚線粒體和炎癥之間的關聯,但研究人員都知道,那些本應該被清除的缺陷線粒體的積累常常會誘發機體炎癥發生;近日,來自巴塞羅那生物醫學研究院的研究人員通過研究發現,移除小鼠肌肉細胞中單一的線粒體蛋白或會誘發小鼠全身出現嚴重的炎癥,從而誘發小鼠過早死亡,相關研究刊登于國際雜志EMBO

    PNAS:端粒長度檢測可篩查短端粒相關的疾病風險

      “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來

    PNAS:端粒長度檢測可篩查短端粒相關的疾病風險

      短端粒相關疾病  “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或

    生化與細胞所研究發現端粒酶保護端粒的機制

      端粒是位于真核生物線性染色體末端的由DNA和蛋白質組成的復合物結構,它對于基因組的完整性以及染色體的穩定性發揮著至關重要的作用,端粒DNA長度以及其結構的維持與細胞衰老和癌癥發生密切相關。在有端粒酶活性的細胞中,端粒酶途徑是端粒DNA長度維持的主要機制;當端粒酶缺失時,細胞也可以通

    PNAS:端粒長度檢測可篩查短端粒相關的疾病風險

      “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來

    PNAS:端粒長度檢測可篩查短端粒相關的疾病風險

      “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來

    PNAS:端粒長度檢測可篩查短端粒相關的疾病風險

      短端粒相關疾病  “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频