元素半導體的結構特性
元素半導體(element semiconductor)是由同種元素組成的具有半導體特性的固體材料,即電阻率約為10-5~107Ω·cm,微量雜質和外界條件變化都會顯著改變其導電性能的固體材料。周期表中,金屬和非金屬元素之間有十二種具有半導體性質的元素,硼(B)、金剛石(C)、硅(Si)、鍺(Ge)、灰-錫(Sn)、磷(P)、灰-砷(As)、黑-銻(Sb)、硫(S)、硒(Se)、碲(Te)、碘(I)。 但其中的大多數是不穩定的,硫、磷、砷、銻、碘都易揮發,灰一錫低溫下才穩定,現認為是禁帶寬度為零的典型半金屬材料,室溫下轉變成無半導體性質的白-錫。硼的熔點太高,不易制備單晶。只有鍺、硅性能優越.是獲得了廣泛應用的典型元素半導體材料。此外,硒在電子照相和光電領域中也獲得了新的用途。......閱讀全文
元素半導體的結構特性
元素半導體(element semiconductor)是由同種元素組成的具有半導體特性的固體材料,即電阻率約為10-5~107Ω·cm,微量雜質和外界條件變化都會顯著改變其導電性能的固體材料。周期表中,金屬和非金屬元素之間有十二種具有半導體性質的元素,硼(B)、金剛石(C)、硅(Si)、鍺(Ge)
元素半導體的基本特性
典型的半導體材料居于Ⅳ-A族,它們都具有明顯的共價鍵;都以金剛石型結構結晶;它們的帶隙寬度隨原子序數的增加而遞減,其原因是其鍵合能隨電子層數的增加而減小。V-A族都是某一種同素異形體具有半導體性質,其帶隙寬度亦隨原子序數的增加而減小。
元素半導體的結構
具有半導體特性的元素,如硅、鍺、硼、硒、碲、碳、碘等組成的材料。其導電能力介乎導體和絕緣體之間。主要采用直拉法、區熔法或外延法制備。工業上應用最多的是硅、鍺、硒。用于制作各種晶體管、整流器、集成電路、太陽能電池等方面。其他硼、碳(金剛石、石墨)、碲、碘及紅磷、灰砷、灰銻、灰鉛、硫也是半導體,但都尚未
鹵族元素的元素特性
原子結構特征最外層電子數相同,均為7個電子,由于電子層數不同,原子半徑不同,從F~I原子半徑依次增大,因此原子核對最外層的電子的吸引能力依次減弱,從外界獲得電子的能力依次減弱,單質的氧化性減弱。相似性鹵素的化學性質都很相似,它們的最外電子層上都有7個電子,有取得一個電子形成穩定的八隅體結構的鹵離子的
半導體的特性
半導體的導電性能比導體差而比絕緣體強。實際上,半導體與導體、絕緣體的區別在不僅在于導電能力的不同,更重要的是半導體具有獨特的性能(特性)。?1. 在純凈的半導體中適當地摻入一定種類的極微量的雜質,半導體的導電性能就會成百萬倍的增加—-這是半導體zui顯著、zui突出的特性。例如,晶體管就是利用這種特
元素半導體的概念
元素半導體指以單一元素組成的半導體,屬于這一材料的有硼、鍺、硅、灰錫、銻、硒、碲等,其中以鍺、硅、錫研究較早,制備工藝相對成熟。
半導體材料的特性
半導體材料的特性:半導體材料是室溫下導電性介于導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。此外,半導體材料的導電性對外界條件(如熱、光、
半導體材料的基本特性
自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。
半導體材料的特性參數
半導體材料雖然種類繁多但有一些固有的特性,稱為半導體材料的特性參數。這些特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,而且更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下特性上的量的差別。常用的半導體材料的特性參數有:禁帶寬度、電阻率、載流子遷移率(載流子即半導體中參加導電的
半導體器件的開關特性
MOS的基本元件是MOS管。MOS管是一種電壓控制器件,它的3個電極分別稱為柵極(G)、漏極(D)和源極(S),由柵極電壓控制漏源電流。MOS管根據結構的不同可分為P型溝道MOS管和N型溝道MOS管兩種,每種又可按其工作特性進一步分為增強型和耗盡型兩類。 1、靜態特性 MOS管作為開
半導體材料的基本特性
自然界的物質、材料按導電能力大小可分為導體、半導體和絕緣體三大類。半導體的電阻率在1mΩ·cm~1GΩ·cm范圍(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因角標不可用,暫用當前描述)。在一般情況下,半導體電導率隨溫度的升高而降低。
硅元素半導體的應用介紹
硅以其優越的物理性質、成熟而較為容易的制備方法以及地球上豐富的資源而成為當前應用最為廣泛的元素半導體。硅在地殼中的資源含量約為27%,因而自20世紀50年代末起,隨著提純和晶體生長技術以及硅平面工藝的發展,硅很快就在半導體工業中取代了鍺的位置。到目前為止,二極管、晶體管和集成電路的制造,仍然是半導體
半導體有什么特性
半導體具有特性有:可摻雜性、熱敏性、光敏性、負電阻率溫度、可整流性。半導體材料除了用于制造大規模集成電路之外,還可以用于功率器件、光電器件、壓力傳感器、熱電制冷等用途;利用微電子的超微細加工技術,還可以制成MEMS(微機械電子系統),應用在電子、醫療領域。半導體是指導電性能介于導體和絕緣體之間的材料
鹵族元素的物理、化學特性
通常來說,液體鹵素分子的沸點均要高于它們所對應的烴鏈(alcane)。這主要是由于鹵素分子比烴鏈更易電極化,而分子的電極化增加了分子之間的連接力(正電極與負電極的相互吸引),這使我們需要對液體提供更多的能量才能使其蒸發。鹵素的物理特性和化學特性明顯區分與于它對應的烴鏈的主要原因,在于鹵素原子(如F、
鋰元素的來源及特性
鋰為稀堿元素之一,在自然界分布比較廣泛,在地殼中平均含量為20×10-6(泰勒,1964),在主要類型巖漿巖和主要類型沉積巖中均有不同程度的分布,其中在花崗巖中含量較高,平均含量達40×10-6(維諾格拉多夫,1962)。在自然界中目前已發現鋰礦物和含鋰礦有150多種,其中鋰的獨立礦物有30多種,大
寬帶隙半導體材料的特性
氮化鎵、碳化硅和氧化鋅等都是寬帶隙半導體材料,因為它的禁帶寬度都在3個電子伏以上,在室溫下不可能將價帶電子激發到導帶。器件的工作溫度可以很高,比如說碳化硅可以工作到600攝氏度;金剛石如果做成半導體,溫度可以更高,器件可用在石油鉆探頭上收集相關需要的信息。它們還在航空、航天等惡劣環境中有重要應用。廣
半導體材料的特性要求
半導體材料的特性參數對于材料應用甚為重要。因為不同的特性決定不同的用途。晶體管對材料特性的要求 :根據晶體管的工作原理,要求材料有較大的非平衡載流子壽命和載流子遷移率。用載流子遷移率大的材料制成的晶體管可以工作于更高的頻率(有較好的頻率響應)。晶體缺陷會影響晶體管的特性甚至使其失效。晶體管的工作溫度
半導體材料的特性和參數
半導體材料的導電性對某些微量雜質極敏感。純度很高的半導體材料稱為本征半導體,常溫下其電阻率很高,是電的不良導體。在高純半導體材料中摻入適當雜質后,由于雜質原子提供導電載流子,使材料的電阻率大為降低。這種摻雜半導體常稱為雜質半導體。雜質半導體靠導帶電子導電的稱N型半導體,靠價帶空穴導電的稱P型半導體。
稀磁半導體的基本特性
稀磁半導體(Diluted magnetic semiconductors,DMS)是指非磁性半導體中的部分原子被過渡金屬元素(transition metals,TM)取代后形成的磁性半導體。因為一般摻入的雜質濃度不高,磁性比較弱,因而叫做稀磁半導體,或者半磁半導體。因兼具有半導體和磁性的性質,即
電子/半導體的特性有哪些?
半導體[2]五大特性∶摻雜性,熱敏性,光敏性,負電阻率溫度特性,整流特性。 ★在形成晶體結構的半導體中,人為地摻入特定的雜質元素,導電性能具有可控性。 ★在光照和熱輻射條件下,其導電性有明顯的變化。
半導體材料的特性要求
半導體材料的特性參數對于材料應用甚為重要。因為不同的特性決定不同的用途。晶體管對材料特性的要求 :根據晶體管的工作原理,要求材料有較大的非平衡載流子壽命和載流子遷移率。用載流子遷移率大的材料制成的晶體管可以工作于更高的頻率(有較好的頻率響應)。晶體缺陷會影響晶體管的特性甚至使其失效。晶體管的工作溫度
低維半導體材料的特性
實際上這里說的低維半導體材料就是納米材料,之所以不愿意使用這個詞,發展納米科學技術的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強大、性能優越的納米電子、光電子器件和電路,納米生物傳感器件等,以造福人類。可以預料,納米科學技術的發展和應用不僅將徹底改變人們的生產和生活方式
半導體特性測試儀
半導體特性測試儀是一種用于化學工程領域的物理性能測試儀器,于2016年05月01日啟用。 技術指標 支持多達9個精密直流源測量單元,能夠提供測量0.1fA到1A的電流或者1uV-210V的電壓。 主要功能 參數分析儀具有無可比擬的測量靈敏度和精度,同時繼承了嵌入式Windows操作系統和
常用的半導體材料的特性參數
半導體材料雖然種類繁多但有一些固有的特性,稱為半導體材料的特性參數。這些特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,而且更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下特性上的量的差別。常用的半導體材料的特性參數有:禁帶寬度、電阻率、載流子遷移率(載流子即半導體中參加導電的
鋰元素的特性和應用介紹
鋰是活潑金屬,很柔軟,在氧和空氣中能自燃。鋰也是一種重要的能源金屬,它在高能鋰電池、受控熱核反應中的應用使鋰成為解決人類長期能源供給的重要原料。鋰工業的發展和軍事工業的發展密切相關。50年代,由于研制氫彈需要提取核聚變用同位素6Li,因而鋰工業得到了迅速發展,鋰則成為生產氫彈、中子彈、質子彈的重要原
鋰元素的特性和主要應用
鋰是活潑金屬,很柔軟,在氧和空氣中能自燃。鋰也是一種重要的能源金屬,它在高能鋰電池、受控熱核反應中的應用使鋰成為解決人類長期能源供給的重要原料。鋰工業的發展和軍事工業的發展密切相關。50年代,由于研制氫彈需要提取核聚變用同位素6Li,因而鋰工業得到了迅速發展,鋰則成為生產氫彈、中子彈、質子彈的重要原
半導體激光器的特性
半導體激光器能夠給科研或者集成用戶提供性能出色的激光器產品,用于制造zui為的激光器系統。半導體激光器具有高效的光電轉換效率,且通過光束整形可直接應用于激光加工等領域,而光纖激光器由于其的光束質量早已已成為國內外研究的熱門。但半導體激光器將來有沒有可能直接獲得高光束質量的激光,從而“打敗”光纖激
半導體激光器的特性
半導體激光器具有高速調制、功率穩定、線寬窄、體積小、結構緊湊、驅動電路集成化的特點。半導體激光器具有的光束質量和調制性能,廣泛應用于:科學研究,工業儀器開發、OEM系統集成。此外,尾纖半導體激光器、外部光纖耦合模塊、小型半導體泵浦固體激光器可供選擇。 半導體激光器能夠給科研或者集成用戶提供性能
硅和鍺元素半導體的應用介紹
硅和鍺是我們最熟悉的元素半導體。鍺是最早實現提純和完美晶體生長,并最早用來制造晶體管的半導體材料。但是,由于鍺的禁帶較窄,鍺器件的穩定工作溫度遠不如硅器件高,加之資源有限,其重要地位早在半導體工業發展初期就被硅所取代。目前,鍺僅以其較高的載流子遷移率和在某些重摻雜情況下的高度紅外敏感特性,在低頻小功
有機元素分析儀的產品特性
1、水平燃燒系統十分獨特,不會有樣品沉積,從而使連續做樣因為樣品沉積帶來的誤差得到了大大地降低,由于動態燃燒和靜態燃燒技術,使得所有樣品均可以得到充分地燃燒,從而使得十分可靠的數據獲得。靜態檢測技術為其所獨有。2、各個元素含量通過一臺采用獨立的三組熱導檢測器進行單獨測量,使該儀器精密度和準確度超級高