什么是硅基負極材料?
更高的正極比容量、更高的負極比容量和更高的電池電壓(以及更少的輔助組元),是高能量密度電池的理論實現路徑。正極材料的比容量相對更低,性能提升對電池(單體)作用顯著;負極比容量提升對于電池能量密度提升仍有相當程度作用。硅材料的理論比容量遠高于(約10倍)已逼近性能極限的石墨,有望成為高能量密度鋰電池的負極材料優選。不過,硅材料的應用,也面臨著一定的技術難點。在體現了優異容量同時,硅基負極材料在嵌鋰過程中表現出了非常明顯的本征體積變化,影響循環壽命;另一方面硅基負極還面臨著和電解液接觸、反應,劣化電池性能的問題。市場上,硅基負極衍生出了單質硅-碳負極、硅氧化物-碳負極、低維硅材料、硅合金等技術路線,前兩者(籠統稱為硅碳負極)實用性較強。單質硅-碳材料1500mAh/g比容量、1000次循環壽命和1C倍率的綜合性能具有一定程度可實現性;單質硅-碳材料包覆改性有較大概率是單質硅-碳負極材料的優選合成方式。硅單質-碳負極材料比容量更高,而......閱讀全文
什么是硅基負極材料?
更高的正極比容量、更高的負極比容量和更高的電池電壓(以及更少的輔助組元),是高能量密度電池的理論實現路徑。正極材料的比容量相對更低,性能提升對電池(單體)作用顯著;負極比容量提升對于電池能量密度提升仍有相當程度作用。硅材料的理論比容量遠高于(約10倍)已逼近性能極限的石墨,有望成為高能量密度鋰電池的
硅基負極材料的性能特點
更高的正極比容量、更高的負極比容量和更高的電池電壓(以及更少的輔助組元),是高能量密度電池的理論實現路徑。正極材料的比容量相對更低,性能提升對電池(單體)作用顯著;負極比容量提升對于電池能量密度提升仍有相當程度作用。硅材料的理論比容量遠高于(約10倍)已逼近性能極限的石墨,有望成為高能量密度鋰電池的
硅納米負極是什么材料
研究人員發現硅納米作為負極理論容量可以達到4200,而目前的石墨負極材料理論也就372,行內很多廠家想用納米硅作為負極材料,問題是硅充電時體積膨脹好幾倍,有出現粉化現象,基本證明納米硅不能單獨作為負極材料,現在比較流行的是硅碳復合材料,緩解硅的膨脹,我們咸陽六元碳晶公司也是初入此行,也想研究開發硅碳
寧波材料所納米硅基負極材料研究取得進展
相對于傳統石墨負極材料(372mAh/g),硅負極材料具有極高的理論比容量(3580mAh/g),是未來高能量密度動力鋰離子電池負極材料首選。但硅負極材料在充放電循環過程中存在體積變化(高達3倍以上),造成硅顆粒粉化,從而引發SEI膜反復再生庫倫效率低,電接觸變差極化增大,使實際硅負極材料循環壽
鋰電材料錫基負極材料錫合金簡介
某些金屬如Sn、Si、Al等金屬嵌入鋰時,將會形成含鋰量很高的鋰-金屬合金。如Sn的理論容量為990mAh/cm3,接近石墨的理論體積比容量的10倍。為了降低電極的不可逆容量,又能保持負極結構的穩定,可以采用錫合金作鋰離子電極負極,其組成為:25%Sn2Fe+75%SnFe3C。Sn2Fe為活性
化學所鋰電池硅基負極研究取得進展
在實現碳達峰和碳中和目標的背景下,開發高能量密度、長壽命的鋰離子電池至關重要。相較于傳統石墨負極,具有更高理論比容量的硅基材料被認為是頗有前景的鋰離子電池負極材料。然而,硅基負極在充放電時存在較大的體積變化,并伴隨有材料結構粉化和電極/電解質間的界面副反應,限制了其循環壽命。因此,優化硅基材料的結構
化學所鋰電池硅基負極研究取得進展
在實現碳達峰和碳中和目標的背景下,開發高能量密度、長壽命的鋰離子電池至關重要。相較于傳統石墨負極,具有更高理論比容量的硅基材料被認為是頗有前景的鋰離子電池負極材料。然而,硅基負極在充放電時存在較大的體積變化,并伴隨有材料結構粉化和電極/電解質間的界面副反應,限制了其循環壽命。因此,優化硅基材料的結構
鋰電池錫基負極材料介紹
錫基負極材料:錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。沒有商業化產品。
有了這個方法,硅納米線鋰電負極材料將不再是困難
近日,中國科學院過程工程研究所在熱等離子體制備硅納米線負極材料上取得新進展,實現每小時公斤級量產,且制備的電池容量和壽命都達到較高標準,與碳材料復合后循環1000次的容量仍有2000mAh/g,為硅碳負極材料的產業化進展提供了新思路。相關研究結果發表在ACS Nano上。 目前傳統的石墨負極材
鋰離子電池硅負極材料綜述:追求微米硅商業化
2022年10月7日,華中科技大學胡先羅教授團隊在Nano Research Energy發表題為“The Pursuit of Commercial Silicon-Based Microparticle Anodes for Advanced Lithium-Ion Batteries: A R
鋰電池的新材料硅碳復合負極材料的介紹
數碼終端產品的大屏幕化、功能多樣化后,對電池的續航提出了新的要求。當前鋰電材料克容量較低,不能滿足終端對電池日益增長的需求。 硅碳復合材料作為未來負極材料的一種,其理論克容量約為4200mAh/g以上,比石墨類負極的372mAh/g高出了10倍有余,其產業化后,將大大提升電池的容量。現在硅碳復
“神奇材料”石墨烯“聯姻”硅基技術
據物理學家組織網7月10日(北京時間)報道,奧地利、德國和俄羅斯的科學家們合作研發出一種新方法,可以很好地讓“神奇材料”石墨烯同現有占主流的硅基技術“聯姻”,制造出在半導體設備等領域廣泛運用的石墨烯-硅化物。相關研究發表在英國自然集團旗下的《科學報告》雜志上。 石墨烯是從石墨材料中剝離出來
鋰電材料錫基負極材料錫復合氧化物簡介
用于鋰離子電池負極的錫基復合氧化物的制備方法是:將SnO,B2O3,P2O5按一定化學計量比混合,于1000℃下通氧燒結,快速冷凝形成非晶態化合物,其化合物的組成可表示為SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x-5y)/2), 其中錫是Sn2+。與錫的氧化物(Sn
鋰電材料錫基負極材料錫氧化物的介紹
錫的氧化物包括氧化亞錫、氧化錫和其混合物,都具有一定的可逆偖鋰能力,偖鋰能力比石墨材料高,可達500mAh/g以上,但首次不可逆容量也較大。SnO/SnO2用作負極具有比容量高、放電電位比較低(在0.4~0.6V vs Li/Li+附近)的優點。但其首次不可逆容量損失大、容量衰減較快,放電電位曲
中國科大低溫合成硅納米鋰離子電池負極材料
一直以來,利用廉價的二氧化硅或硅酸鹽制備硅材料都需要較高的反應溫度。目前工業上采用的方法依然是高溫碳熱還原法(>1700℃),所制備的硅大都為塊材,難以應用于鋰離子電池負極材料。2007年至今,650℃條件下鎂熱還原二氧化硅是主要的制備納米硅材料的方法,但該方法條件苛刻,容易產生副產物Mg2Si
硅基負極固態電解質界面膜生長演化機制獲揭示
原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510640.shtm
鋰離子電池負極材料錫基合金的簡介
錫基軸承合金的主要成分是錫、鉛、銻、銅。 其中銻和銅,用以提高合金強度和硬度。巴氏合金可簡單地分為三種:高錫合金、高鉛合金和中間合金(合金中錫和鉛均占有重要比例)。在所有這些合金系中,銻和銅均作為重要的合金化元素和硬化元素,而且其結構是由硬的、彌散于軟基質中的金屬間化合物組成。
鋰離子電池負極材料錫基合金的應用
巴氏合金(包括錫基軸承合金和鉛基軸承合金)是最廣為人知的軸承材料,由美國人巴比特發明而得名,因其呈白色,又稱白合金,具有減摩特性的錫基巴氏合金和鉛基巴氏合金是唯一適合相對于低硬度軸轉動的材料,與其它軸承材料相比,具有更好的適應性和壓入性,廣泛用于大型船用柴油機、渦輪機、交流發電機,以及其它礦山機
鋰離子電池負極材料錫基合金鍍層檢驗
若鍍層仍達不到滿意的光亮度或發黑,就應該檢查以下幾個方面: (1) 整流器電流是否缺相等電源原因。 (2) 是否有大量氯離子或其它離子混入鍍液中。 (3) 導電是否良好,滾桶是否有問題。 若原因不明(特別是鍍層發黑、有黑色小點時)可用0. 05~0. 1A/dm2 的電流密度和較大的陰極
鋰離子動力電池高容量硅/碳負極材料取得突破
目前市場上主流電動汽車的行駛里程和人們日常出行需求仍有差距,提升動力電池能量密度是解決這一問題的關鍵。國家重點研發計劃“新能源汽車”重點專項支持的北京大學項目團隊設計制備出一種高比容量的自體積適應性硅/碳負極材料,為開發高比能量鋰離子電池、進一步提高電動汽車行駛里程奠定了基礎。 開發高容量負
鋰離子電池用硅碳作為負極材料的優勢介紹
硅是目前人類至今為止發現的比容量(4200mAh/g)最高的鋰離子電池負極材料,是一種最有潛力的負極材料。硅負極材料存在的問題有循環壽命低、體積變化大、持續出現SEI膜,而硅碳鋰離子電池負極材料可以有效改善這些問題,所以硅碳負極材料是未來負極材料的發展重點無疑。 硅材料的質量比容量最高可達42
鋰電材料錫基負極材料鋰鈦復合氧化物相關介紹
用來作鋰離子電池負極的鋰鈦復合氧化物主要是Li4Ti5O12,其制備方法主要有:高溫固相合成法、溶膠-凝膠法等。 高溫固相合成法 按一定計量的TiO2,LiCO3混勻研磨,在空氣氣氛下于1000℃保溫26h冷至室溫即得Li4Ti5O12。將TiO2, LiOH.H2O混勻研磨,在空氣氣氛下于
北大潘鋒聯合十單位破解硅基負極SEI生長演化機制
產業上新一代的鋰電池負極材料是硅碳材料,主要包括微米級氧化亞硅復合石墨(硅氧碳)負極與納米硅碳負極兩大類。“傳統石墨已達極限,硅基負極將開新局”。這是近兩年新能源行業達成的普遍共識,作為鋰電池領域技術門檻高、市場前景十分廣闊的賽道,各大電池廠、材料廠爭相入局。對于新銳硅碳材料公司,甚至出現了上百
什么是芽基?
在上述的定義中并不包括那些能明顯地區別于其他胚區的細胞群,也就是說即使是形態上不能明確地區別于母層的胚層的細胞群,而在分化能力方面能明顯地區別于附近的細胞群,這種細胞多被稱為芽基。
什么是酰基
酰基,指有機或無機含氧酸去掉羥基后剩下的一價原子團,通式為R-M(O)-。酰基與鹵素原子、烷氧基、氨基或取代氨基及酰氧基結合可以分別獲得酰鹵、酯、酰胺和酸酐。通常酰基中的M原子都為碳,但硫、磷、氙等原子也可以形成類似的酰基化合物,如四氟一氧化氙、硫酰氯、氯化亞砜。此類酰鹵一般稱為鹵氧化物。酰基不是一
關于鋰離子電池負極材料錫基合金的介紹
錫基合金是錫銻銅合金,它的摩擦系數小,硬度適中,韌性較好,并有很好的磨合性,抗蝕性和導熱性,主要用于高速重載荷條件下工作的軸瓦。錫基軸承合金的主要成分是錫、鉛、銻、銅。 其中銻和銅,用以提高合金強度和硬度。巴氏合金可簡單地分為三種:高錫合金、高鉛合金和中間合金(合金中錫和鉛均占有重要比例)。在所
煤化所在電池負極用碳及硅/碳材料研發方面獲進展
在加速能源使用形式由化石能源向清潔能源轉變的戰略背景下,鋰離子電池(LIB)憑借其高能量密度、高功率、長循環壽命、較高的工作電壓、放電平穩、寬工作溫度范圍、無記憶效應和安全性能較好等綜合優勢,在實現環保而高效的能量存儲及轉化方式方面顯得尤為重要。作為鋰離子電池的重要組成部分,負極自身的性能直接影
負極材料的定義
負極指電源中電位(電勢)較低的一端。在原電池中,是指起氧化作用的電極,電池反應中寫在左邊。從物理角度來看,是電路中電子流出的一極。而負極材料,則是指電池中構成負極的原料,目前常見的負極材料有碳負極材料、錫基負極材料、含鋰過渡金屬氮化物負極材料、合金類負極材料和納米級負極材料。
商丘師院合成高性能鋰電池新型鍺基負極材料
近日,商丘師范學院化學化工學院魏偉博士在高性能鋰離子電池負極材料研究領域取得了進展。相關研究成果已發表于《納米尺度》。 作為一種新型鋰離子電池負極材料,金屬鍺具有可逆容量高、電壓平臺低等優勢,有望取代石墨負極材料,引起了人們的持續關注。但鋰離子嵌入與脫出過程中,金屬鍺劇烈體積變化會導致其容量迅
鋰離子電池負極材料錫基合金電鍍的相關介紹
隨著電子工業的飛速發展,對電子元器件的可性及抗變色能力的要求越來越高,對此國內外電鍍工作者給予了極大關注。國內可以在工業化生產中實際使用的可焊性鍍層主要是光亮純錫鍍層、錫鉛合金和錫鈰、錫銻、錫鉍、錫銦等二元鍍層。生產實踐證明,以錫為主體的多元合金比二元合金如錫鈰合金具有更光亮的外觀、更強的抗氧化