<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    三星突破石墨烯合成技術

    一個由三星電子支持的研究小組稱他們在石墨烯方面取得了重大進展,可以大規模地合成石墨烯晶體,這將加速石墨烯的商業化進程。 石墨烯是是由碳原子按一定軌道組成的六角型類蜂巢晶格的平面薄膜,它是目前世界上最薄卻也是最堅硬的納米材料,只有一個碳原子厚度,并且有著優異的導電和導熱等性能。但是這種特殊材料一直被認為是假設性的存在,直到2004年,英國物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地從石墨中分離出石墨烯,才被證實它可以單獨存在。兩位科學家也因這個開創性發現而獲得2010年諾內爾物理學獎。 盡管如此,石墨烯的合成仍然很難大范圍應用,因為現有的合成技術還處于初級階段,像最普通的微機械分離法,生產出的石墨烯大小非常有限。要想達到一般產品的尺寸,只能將多個石墨烯晶體合成在一起,但是這樣一來會極大削弱它的導電性。 而據三星SAIT和韓國成均館大學的科學家發表在《科學》上的研究成果顯示,他們已經研發出新型合成技術,可......閱讀全文

    蘭州化物所發展出納孔石墨烯一步合成新方法

      手性分離是分離科學面臨的挑戰,現有手性分離主要依賴色譜柱分離技術,而膜技術在手性分離中的應用難度大,發展也相對緩慢。有文獻報道稱,通過模擬計算表明具有一定結構的納孔石墨烯有望用于高選擇性對映體的分離。因此,發展一種簡單快速實現手性納孔石墨烯膜合成的新方法具有重要意義。  中國科學院蘭州化學物理研

    石墨炔碳原子雜化類型

    碳家族發展歷程  碳具有sp3、sp2和sp種雜化態,通過不同雜化態可以形成多種碳的同素異形體,如通過sp3雜化可以形成金剛石,通過sp3與sp2雜化則可以形成碳納米管、富勒烯和石墨烯等,如下圖所示。a金剛石 b石墨 c藍絲黛爾石 d、e、f足球烯g無定形碳 h碳納米管  1996年化學諾貝爾獎被授

    電化學傳感器在環境監測中應用

    傳統的環境監測通常采用離線、實驗室分析方法,分析速度慢,操作復雜,分析儀器大且昂貴,無法進行現場快速分析和連續在線監測。電化學傳感器以成本低、易攜帶、多功能等優點在環境監測領域的應用日益廣泛。鑒于對電化學傳感器的靈敏度要求越來越高,很多納米材料如碳納米管、納米金屬顆粒、碳纖維、多孔納米材料等被廣泛用

    韓開發出石墨烯合成新方法 可與微電子兼容

      最近,韓國研究人員開發出一種與微電子兼容的方法來生長石墨烯,在硅基底上成功合成了晶片級(直徑4英寸)的高質量多層石墨烯。該方法基于一種離子注入技術,簡單而且可升級。這一成果使石墨烯離商業應用更近一步。相關論文發表在本周的《應用物理快報》上。  晶片級的石墨烯可能是微電子線路中一個必不可少的組成部

    利用MALDI—TOFMS檢測農藥的新方法

    為消除病蟲害對農作物的影響,人們在植物的生長過程中使用了大量農藥,但農藥的使用具有雙面性,一方面帶來了糧食增產,另一方面也帶來了環境和食品安全問題。近年來,有關食品中農藥殘留對人體造成嚴重危害的事例屢次被報道。目前,對農藥殘留的檢測主要使用色譜法,但色譜法檢測儀器復雜,樣品前處理過程繁雜,嚴重影響食

    石墨烯晶界輸運性質研究取得系列進展

      以石墨烯為代表的二維原子晶體材料的準粒子(如激子、狄拉克費米子等)由于量子限域效應,顯示出室溫量子霍爾效應等新奇量子特性,也促進了相關新型電子、光電子器件的應用等相關研究。獲得本征的電學輸運特性、光電特性等物理性質乃至最終的器件應用的關鍵在于大面積、高質量樣品的生長。近年來,中國科學院物理研究所

    材料前沿丨石墨炔:從發現到應用

    編者按:《石墨炔:從發現到應用》為國內外第一部全方位、系統地介紹石墨炔從基礎科學研究到實際應用探索的前沿著作。由我國首次發現石墨炔的專家,中國科學院院士李玉良先生及其團隊核心專家李勇軍研究員共同撰寫。內容新穎、權威,科學性和可讀性強!合成、分離新的不同維數碳同素異形體是過去二三十年研究的焦點,科學家

    韓國開發出新概念石墨烯合成技術

      據韓國《亞洲經濟》網站消息,韓國忠南大學研究組在加工石墨烯時,省略了必要的傳遞過程,利用鈦在低溫下開發出新型高品質的大面積石墨烯合成技術。該研究成果發表在納米領域的國際學術雜志《ASC Nano》上。   石墨烯的導電率和熱傳導性好,機械強度高,柔軟性和透明性也很好。因此,可以廣泛應用于二次電池

    半導體所在石墨烯的化學摻雜及其物性研究方面取得新進展

      石墨插層化合物自1841年被發現以來,一直廣泛應用于電極、電導體、超導體和電池等方面。但是,傳統的石墨插層化合物由于其厚度和大尺寸的限制,很難應用于納米器件。另一方面,石墨烯在納米電子和光電子器件方面具有顯著的潛在應用,提高其載流子濃度和遷移率一直是基礎物理和器件應用研究領域所致力解決的目標之一

    廣西大學已掌握批量生產粉體石墨烯技術

    石墨烯在中國正成為“科技寵兒”,不少人期待這一“神奇材料”繼續書寫“科技改變生活”的下一個故事。作為一種技術含量高、應用潛力廣泛的碳材料,石墨烯也逐漸被應用于新能源開發中。 2010年,石墨烯發明者獲得諾貝爾物理學獎。如今,中國已將石墨烯列為戰略前沿材料之一。在廣西,石墨烯的生產

    共223項!化工、石化、冶金等行業標準報批!附清單

    序號標準編號標準名稱標準主要內容80HG/T 5579-2019對苯二甲酸加氫精制催化劑活性試驗方法本標準規定了對苯二甲酸加氫精制催化劑活性試驗方法。本標準適用于以活性炭為載體,以鈀為主要活性組分的對苯二甲酸加氫精制催化劑。81HG/T 5580-2019聚氧化乙烯催化劑化學成分分析方法本標準規定了

    一種氮摻雜多孔石墨烯制備新方法可用于稀土分離

      近日,中國科學院蘭州化學物理研究所手性分離與微納分析課題組開發出一種多重限域的一步可控合成摻雜方法,制備出對稀土離子具有高分離選擇性的氮摻雜納孔石墨烯膜(專利申請號:CN 202010861481.0)。該研究在吸附了苯丙氨酸的氧化石墨烯膜的二維層間空間限域生長層狀鋅類水滑石,從而構建類水滑石/

    水溶性低維材料合成與應用獲突破

      華東理工大學費林加諾貝爾獎科學家聯合研究中心田禾院士、賀曉鵬副研究員團隊與上海交通大學顏德岳院士、麥亦勇特別研究員團隊合作,在水溶性低維材料的可控合成、超分子自組裝及其生物技術領域的應用拓展取得突破性進展,相關研究成果近日在線發表于《德國應用化學》。  石墨烯及其低維衍生材料具備優異的機械、光電

    我國學者在水溶性低維材料-石墨烯合成與應用獲突破

      華東理工大學費林加諾貝爾獎科學家聯合研究中心田禾院士、賀曉鵬副研究員團隊與上海交通大學顏德岳院士、麥亦勇特別研究員團隊合作,在水溶性低維材料的可控合成、超分子自組裝及其生物技術領域的應用拓展取得突破性進展,相關研究成果近日在線發表于《德國應用化學》。圖片來源于網絡  石墨烯及其低維衍生材料具備優

    夏維東組在等離子體宏觀制備石墨烯方面取得進展

      中國科學技術大學工程科學學院熱科學和能源工程系教授夏維東研究團隊與合肥碳藝科技有限公司合作,提出“利用磁分散電弧產生大面積均勻熱等離子體合成石墨烯”的新方法,突破了熱等離子體工藝或高能耗、或產品均勻性低和生產穩定性不足的技術瓶頸,有望實現大規模連續生產。該研究成果近期以Continuous sy

    合肥研究院研究發現氧化石墨烯新結構和特性

      在國家自然科學基金委的支持下,中國科學院合肥物質科學研究院智能所張忠平研究員領銜的研究團隊首次發現,用經典方法制備的氧化石墨烯在其π網絡平面上存在大量π共軛的碳自由基,并且這種π共軛的碳自由基可以直接引發魯米諾長時間可見的超強化學發光,其發光強度超過辣根過氧化酶和雙氧水經典體系。相關研究結果近日

    吉大附中學生人工合成納米新材料

    胡舒賀在講述他的實驗過程   有一種材料叫石墨烯,它導電快、無毒、環保,能更好地處理有機染料廢水。近日,在第28屆全國青少年科技創新大賽上,吉大附中高三年級胡舒賀用人工合成的方法制備出了石墨烯包覆納米TiO2復合材料,獲金牌,這是我省科技創新大賽個人最好成績。   昨日,記者在吉大附中看到了這個

    南開大學陳永勝入選2019年中科院院士增選初步候選人

      分析測試百科網訊 2019年8月1日凌晨,中國科學院公布了2019年中國科學院院士增選初步候選人名單(詳細名單),共181人入選。其中,化學部共28人入選,南開大學陳永勝教授就是這28個入選候選人之一。南開大學陳永勝教授  陳永勝簡介  陳永勝教授于1997年在加拿大維多利亞大學(Univers

    半導體所多層轉角石墨烯的層間耦合研究獲進展

      石墨烯具有優良的電學性能和光學性能,因此被期待可用來發展更薄、導電速度更快的新一代電子元件、晶體管和光電器件。將石墨烯堆疊起來可以得到多層石墨烯。除了具有和體石墨相同的Bernal堆垛(即AB堆垛)方式的多層石墨烯之外,還可以在實驗室制備或者合成出不同石墨烯片層取向隨機的多層石墨烯-多層轉角石墨

    半導體所等在轉角多層石墨烯的呼吸層間耦合研究中獲進展

      以石墨烯為代表的二維材料具有優良的電學性能和光學性能,因此被期待可用來發展更薄、導電速度更快的新一代電子元件、晶體管和光電器件。將石墨烯堆疊起來可以得到多層石墨烯。除了具有和體石墨相同的Bernal堆垛(即AB堆垛)方式的多層石墨烯之外,還可以在實驗室制備或者合成出不同石墨烯片層取向隨機的多層石

    石墨烯周期性折疊及其在應力傳感器件中應用研究獲突破

      中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)納米物理與器件實驗室張廣宇研究組自2009年成立以來,一直把石墨烯納米結構的可控加工及其輸運性質的研究作為課題組的一個重要方向。石墨烯是近年來發現的一種兩維結構材料,表現出獨特的電學、力學、光學和其他新奇的物理特性。張廣宇研究組在前期的研究中,

    光控水凝膠可模擬手指彎曲和爬行

      植物朝向光源生長,這種現象叫作向光性。據物理學家組織網近日報道,受此啟發,美國加利福尼亞大學伯克利分校的生物工程師開發出一種水凝膠,能通過光照控制,模擬手指關節的彎曲和爬行運動。近日出版的《納米快報》對此做了詳細介紹。   新型水凝膠是一種水凝膠制動器。水凝膠制動器能對刺激產生可逆反應,目前在

    超級電容器電極材料“瓶頸”獲突破

      原料來自于儲量豐富提取便利的鐵鹽、碳等,能在常溫常壓下進行合成,不產生有毒有害氣體……近日,南京理工大學夏暉教授團隊成功合成了非晶FeOOH/石墨烯復合納米片,這種新新型非晶材料將大幅降低超級電容器的成本,極大地推動其商業化。   一直以來,超級電容器電極材料的研究集中在納米晶材料上,但是納米晶

    引入石墨烯量子點,讓古墓壁畫更“長壽”

       價值連城的古代館藏壁畫正受到日益嚴重的損壞。而由于具有極好的兼容性,無機納米材料(如納米氫氧化鈣)作為一種前景良好的壁畫保護材料受到廣泛關注。但到目前為止,其合成方法仍然成本高,操作復雜,而且通常使用有機溶劑。  西北工業大學納米能源材料研究中心教授魏秉慶團隊近日在《先進功能材料》上發表論文稱

    頻率高出萬倍 超快脈沖激光器提高數據傳輸速度

    科技日報北京1月24日電 (記者馮衛東)據《物理學家組織網》近日報道,韓國科學技術研究院(KIST)研發出的超快脈沖激光器產生的頻率要比目前最先進的脈沖激光器高出1萬倍。這是通過將包含石墨烯的附加諧振器插入到工作在飛秒(10-15秒)范圍內的光纖脈沖激光振蕩器中實現的,將該方法應用于數據通信有望大大

    第三屆全國樣品制備會分會報告繽紛呈現

      分析測試百科網訊 2017年8月24日,第三屆全國樣品制備學術報告會在昆明召開(相關報道:第三屆全國樣品制備會在春城開幕 樣品處理再現新技術)。除了精彩的大會報告(相關報道:第三屆全國樣品制備會大會報告一 新方法層出不窮),大會還安排了多場分會報告,來自全國各地的高校、研究院和企業等紛紛帶來新技

    中國科大就制備石墨烯基超晶格材料提出一種新策略

      近日,中國科學技術大學教授謝毅課題組在石墨烯基超晶格材料的合成及應用領域取得新進展。研究人員通過利用空間限域生長的策略,首次在溶液中合成出釩氧骨架-石墨烯超晶格材料并顯示出大幅度增強的磁熱效應,研究成果在線發表在Nature Communications上。   眾所周知,超晶格材料由于其特殊的

    中國科大就制備石墨烯基超晶格材料提出一種新策略

      近日,中國科學技術大學教授謝毅課題組在石墨烯基超晶格材料的合成及應用領域取得新進展。研究人員通過利用空間限域生長的策略,首次在溶液中合成出釩氧骨架-石墨烯超晶格材料并顯示出大幅度增強的磁熱效應,研究成果在線發表在Nature Communications上。   眾所周知,超晶格材料由于其特殊的

    2014年世界新材料科技發展回顧

      在納米材料領域,美國國家標準與技術研究院的研究人員通過在納米尺度上采用一種獨特的三明治結構,開發出一種多壁碳納米管材料,其整體厚度還不到人類頭發直徑的百分之一,卻可以大幅降低泡沫制品的可燃性。國家直線加速器實驗室和斯坦福大學合作,首次揭示了石墨烯插層復合材料的超導機制,并發現一種潛在的工藝能使石

    如何表征石墨烯層數?

    表征石墨烯的手段主要有透射電子顯微鏡(TEM)、X射線衍射(XRD)、紫外光譜(UV)、原子力顯微鏡(AFM)、拉曼光譜(RAMAN)、掃描隧道顯微鏡(STM)及光學顯微鏡等。其中,XRD和UV均可對石墨烯的結構進行表征,主要用來監控石墨烯的合成過程;而表征石墨烯的層數可以采取的手段有TEM、RAM

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频