<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    分子克隆技術(質粒DNA和DNA插入片段的制備、連接反應...1

    克隆(Clone)是指通過無性繁殖過程所產生的與親代完全相同的子代群體。分子克隆(Molecular Cloning)是指由一個祖先分子復制生成的和祖先分子完全相同的分子群,發生在基因水平上的分子克隆稱基因克隆(DNA克隆)。其基本原理是:將編碼某一多肽或蛋白質的基因(外源基因)組裝到細菌質粒(質粒是細菌染色體外的雙鏈環狀DNA分子)中,再將這種質粒(重組質粒)轉入大腸桿菌體內,這樣重組質粒就隨大腸桿菌的增殖而復制,從而表達出外源基因編碼的相應多肽或蛋白質。由于質粒具有不相容性,即同一類群的不同質粒常不能在同一菌株內穩定共存,當細胞分裂時就會分別進入到不同的子代細胞中,所以來源于一個菌株的質粒是一個分子克隆,而隨質粒復制出的外源基因也就是一個分子克隆。(一)質粒DNA的制備質粒是存在于細菌染色體外的能獨立復制的雙鏈閉環DNA分子,它能賦予細菌(宿主細胞)某些特定的遺傳表型。質粒并非細菌生長所必需,但由于其編碼一些對宿主細菌有......閱讀全文

    分子生物學常用實驗技術(page 2)

    一、RNA 制備   模板mRNA 的質量直接影響到cDNA 合成的效率。由于mRNA 分子的結構特點,容易受RNA 酶的攻擊反應而降解,加上RNA 酶極為穩定且廣泛存在,因而在提取過程中要嚴格防止RNA 酶的污染,并設法抑制其活性,這是本實驗成敗的關鍵。所有的組織中均存在RNA 酶,人

    分子克隆技術(質粒DNA和DNA插入片段的制備、連接反應...-2

    PCR引物決定PCR的特異性,引物的設計就顯得尤為重要。下面以已知DNA序列設計引物為例介紹設計引物應考慮的幾個方面:1、GC比值:眾所周知,堿基對中的GC之間有三條氫鍵,AT之間有兩條氫鍵,GC和AT在引物序列中的合理比例是設定PCR中退火溫度的重要依據。通常在一個引物中GC和AT各半即可。2、長

    基因克隆技術概述

    基因克隆技術是分子生物學的核心技術,其目的是獲得某一基因或DNA片段的大量拷貝,用于深入分析基因的結構與功能,并可達到人為改造細胞以及物種遺傳性狀的目的。基因克隆的一項關鍵技術是DNA重組技術,它利用酶學方法將不同來源的DNA分子進行體外特異性切割,重新拼接組裝成一個新的雜合DNA分子。在此基礎上將

    常用的分子生物學基本技術

    核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的

    分子生物學常用實驗技術(page 1)

    第一章質粒DNA 的分離、純化和鑒定 第二章DNA 酶切及凝膠電泳 第三章大腸桿菌感受態細胞的制備和轉化 第四章RNA 的提取和cDNA 合成 第五章重組質粒的連接、轉化及篩選 第六章基因組DNA 的提取 第七章RFLP 和RAPD 技術 第八章聚合酶鏈式反應(PCR)擴增和擴增產物克隆 第九章分

    基因的轉移與重組體的篩選和鑒定-3

    2. 定向克隆使目的基因按一定的方向插入載體的克隆方案稱為定向克隆。最常用的定向克隆方案使用兩種限制性內切酶切割載體和目的基因,從而在載體和目的基因兩端產生非同源互補的兩個粘性末端。定向克隆也可以通過在一端造成平端,另一端產生同源粘性末端實現年-平連接。定向克隆有效的限制了自身環化,并且實現了目的基

    DNA重組技術(Recombinant DNA)實驗原理、用品和步驟(一)

    【實驗原理】1.DNA重組技術重組DNA(Recombinant DNA)技術是遺傳工程的核心技術,也是人類在基因和DNA分子水平進行操作的技術。它包括以下幾個步驟: 1)重組DNA分子的構建:即將目的基因(DNA或cDNA片段)與載體DNA重組,應用TA克隆方法,將PCR擴增產物快速克隆至質粒

    盤點:31項與免疫學有關的分子生物學實驗技術

      現代分子生物學和免疫學的進展加深了我們對許多疾病的了解,并且導致了免疫新策略的產生,免疫學檢測方法可分為體液免疫和細胞免疫測定。本文盤點了與免疫學有關的分子生物學實驗技術匯總。  一、GST pull-down實驗  GST是指谷胱甘肽巰基轉移酶,GST pull-down實驗是一個行之有效的驗

    重組質粒的連接、轉化及篩選

    實驗概要本技術以pBS質粒、E. coli DH5α為例介紹了重組質粒的連接、轉化及篩選。實驗原理本實驗所使用的載體質粒DNA為pBS,轉化受體菌為E.coli DH5α菌株。由于pBS上帶有Ampr 和lacZ基因,故重組子的篩選采用Amp抗性篩選與α-互補現象篩選相結合的方法。因pBS帶有Amp

    利用核苷酸交換和剪切技術進行DNA碎裂和定向

    利用核苷酸交換和剪切技術進行DNA碎裂和定向進化             實驗材料 T4 DNA 連接

    PCR產物克隆方法

    平端連接 通常情況下,PCR產物可直接與平端載體DNA進行連接,但其連接效率效低。因為TaqDNA聚合酶具有非模板依賴性末端轉移酶活性,能在兩6條 DNA鏈的3'末端加上一個多余的堿基,使合成的PCR產物成為3'突出一個堿基的DNA分子。這種DNA分子的連接效率很低。由

    在質粒載體中進行定向克隆實驗

    大多數常用質粒都含有可被不同內切酶識別的多克隆位點。由于可供選擇的克隆位點很多 [ 如 Invitrogen 公司的 PSE280 質粒的克隆位點有 46 個之多,而且還可以設計含有更多克隆位點的多聚接頭(Brosius 1992 ) ],因此一般來說總是能夠找到一個帶有與某一特定外源 DNA 片段

    在質粒載體中進行定向克隆實驗

    在質粒載體中進行定向克隆實驗             實驗方法原理 大多數常用質粒都含有可被不同內切酶識別的多克隆位點。由

    PCR技術(十):PCR產物克隆方法

    平端連接  通常情況下,PCR產物可直接與平端載體DNA進行連接,但其連接效 率效低。因為TaqDNA聚合酶具有非模板依賴性末端轉移酶活性,能 在兩6條DNA鏈的3'末端加上一個多余的堿基,使合成的PCR產物成為 3'突出一個堿基的DNA分子。這種DNA分子的連接效率很低。由于PCR

    在質粒載體中進行定向克隆實驗

    實驗方法原理 大多數常用質粒都含有可被不同內切酶識別的多克隆位點。由于可供選擇的克隆位點很多 [ 如 Invitrogen 公司的 PSE280 質粒的克隆位點有 46 個之多,而且還可以設計含有更多克隆位點的多聚接頭(Brosius 1992 ) ],因此一般來說總是能夠找到一個帶有與某一

    準備插入片段實驗

                試劑、試劑盒 緩沖液、溶液和試劑 酶和酶緩沖液 核酸和寡核苷酸 儀器、耗

    什么是PCR?

     定義  聚合酶鏈式反應簡稱PCR(英文全稱:Polymerase Chain Reaction),  聚合酶鏈式反應具體內容點擊: 聚合酶鏈式反應,簡稱PCR。聚合酶鏈式反應,其英文Polymease Chain Reaction(PCR)是體外酶促合成特異

    GeneCopoeia基因克隆技術相關研究

    與PCR、qPCR等技術一樣,作為分子實驗室必備手段,分子克隆技術被廣泛用于多樣的基因功能研究。所謂分子克隆指的是在體外將核酸分子插入病毒、質粒或其他載體分子,構成遺傳物質的新組合,使之進入宿主細胞內并獲得持續穩定增殖能力和表達。 基因克隆技術的發展經歷3個階段,第一階段為經典的T4 DN

    準備插入片段實驗

    試劑、試劑盒 緩沖液、溶液和試劑酶和酶緩沖液核酸和寡核苷酸儀器、耗材 專用設備實驗步驟 第 1 階段:DNA 引物的激酶處理研究表明很多種 DNA 聚合酶(比如,T7、修飾過的 T7、Taq、Vent、Tth 和 Klenow)具有脫氧核苷酸末端轉移酶(Tdt) 活性(Clark1988;H

    準備插入片段實驗

    試劑、試劑盒緩沖液、溶液和試劑酶和酶緩沖液核酸和寡核苷酸儀器、耗材專用設備實驗步驟第 1 階段:DNA 引物的激酶處理研究表明很多種 DNA 聚合酶(比如,T7、修飾過的 T7、Taq、Vent、Tth 和 Klenow)具有脫氧核苷酸末端轉移酶(Tdt) 活性(Clark1988;Hu1993)。

    分子生物學實驗基礎知識

    分子生物學是在生物化學基礎上發展起來的,以研究核酸和蛋白質結構、功能等生命本質的學科,在核酸、蛋白質分子水平研究發病、診斷、治療和預后的機制。其中基因工程(基因技術,基因重組)是目前分子生物學研究熱點,這些技術可以改造或擴增基因和基因產物,使微量的研究對象達到分析水平,是研究基因調控和表達的方法,也

    重組質粒的轉化、篩選和鑒定操作

    摘要: 學習克隆工作中最常用的雙酶切,將外源基因與質粒連接方法及操作技術. 一、實驗目的:  1、學習克隆工作中最常用的雙酶切;2、學習將外源基因與質粒連接方法及操作技術;3、學習氯化鈣法制備 大腸桿菌 感受態細胞的技術;4、了解細胞轉

    重組質粒的轉化、篩選和鑒定

    一、實驗目的1、學習克隆工作中最常用的雙酶切;2、學習將外源基因與質粒連接方法及操作技術;3、學習氯化鈣法制備大腸桿菌感受態細胞的技術;4、了解細胞轉化的概念及其在分子生物學研究中的意義。5、外源質粒DNA轉入受體菌細胞的技術以及篩選轉化體的技術。6、學習鑒定重組子的方法。二、 實驗原理重組子的建立

    桿狀病毒-昆蟲細胞表達系統

    實驗步驟 一、桿狀病毒表達載體 最簡單的經典桿狀病毒表達載體是一個重組的桿狀病毒,其基因組含有一段外源核酸序列,通常為編碼目標蛋白質的dDNA,在多角體蛋白啟動子控制下進行轉錄。這個嵌合的基因由多角體蛋白啟動子和外源蛋白編碼序列組成

    目的基因的亞克隆-2

    2. 連接產物的轉化⑴ 取100μl貯存于-70℃鈣化菌,冰浴化開;⑵ 加入適量連接產物(一般不超過10μl,輕輕混勻,冰浴20min;⑶ 于42℃熱休克90s,迅速轉移至冰浴中,繼續冰浴2-3min;⑷ 加入LB液體培養基200μl,于37℃緩搖孵育45min;⑸ 將培養物適量涂于1.5%瓊脂LB

    桿狀病毒-昆蟲細胞表達系統2

    五、親代桿狀病毒基因組的改進就像轉移質粒的改進,對親代桿狀病毒基因組的改進也是為了滿足各種不同的需要。起初,最主要的目的是找到克服重組桿狀病毒載體構建和分離低效率的方法,這也是最初的桿狀病毒-昆蟲細胞系統存在的主要問題。現在已經知道這個問題的根源在于, 在共轉染的昆蟲細胞系中,轉移質粒和親代桿狀病毒

    原位雜交組織化學概述

    一、核酸分子雜交技術1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動

    聚合酶鏈反應構建重組DNA

    基本方案             實驗方法原理 利用聚合酶鏈式反應(PCR),任何兩個DNA片段可連接成一個新的重組DNA

    基因的轉移與重組體的篩選和鑒定-2

    二、重組DNA分子轉入真核細胞1. 根癌農桿菌Ti質粒介導法農桿菌介導的Ti質粒載體轉化法是目前研究最多、機制最清楚、技術方法最成熟的基因轉化途徑。迄今為止約8096的轉基因植株都是利用農桿菌介導轉化系統獲得的。農桿菌是一類土壤習居菌,革蘭氏染色呈陰性,能感染雙子葉植物和裸子植物,而對絕大多數單子葉

    基因工程重組抗體技術的研究

    在抗體研究的漫長過程中,相繼發展了三代不同水平的抗體制備技術?其中以抗原免疫高等脊椎動物制備的多克隆抗體,稱為第一代抗體;通過雜交瘤技術生產的只針對某一種特定抗原決定簇的單克隆抗體,稱為第二代抗體;應用重組DNA技術或是基因突變的方法改造某種抗體基因的編碼序列,使之產生出自然界中原本存在的抗體蛋白質

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频