<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    Nature子刊:北大BIOPIC發表新成像技術

    細胞骨架是指真核細胞中的蛋白纖維網絡結構,由微絲、微管和中間纖維組成。細胞骨架在細胞分裂、細胞生長、物質運輸等多種重要活動中起到了非常關鍵的作用。在大腸桿菌中,肌動蛋白MreB是一種重要的細胞骨架蛋白。而EF-Tu(細菌延伸因子)主要在蛋白合成的延伸過程中發揮功能。研究這兩種蛋白的相互作用,可以幫助人們更好的理解細胞中的蛋白翻譯機制。 日前,北京大學生物動態光學成像中心(BIOPIC)的孫育杰研究組通過一個新的成像方法,在細胞中深入分析了MreB–EF-Tu的相互作用。這一成果發表在近期的Nature Communications雜志上。 成像技術可以幫助人們在細胞中對一組互作蛋白進行研究。不過,其他配對和非配對分子的熒光背景限制了這樣的應用,尤其是在亞衍射的細胞區域。(延伸閱讀:選對你的共聚焦顯微鏡) 為此,研究人員開發了一個新的成像方法。他們將雙分子熒光互補技術與光敏定位顯微鏡結合起來,實現了對特定互作蛋白的超高分......閱讀全文

    小動物活體成像技術

    1、背景和原理1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事件。

    小動物活體成像技術概覽(一)

    1. 背景和原理:1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事

    生物醫學光學技術

      摘 要:隨著生物分子光學標記技術的不斷進步,光學技術在揭示生命活動基本規律的研究中正發揮越來越重要的作用,也為醫學診斷與治療提供了更多、更有效的手段。本報告首先簡要介紹光學技術在生物醫學應用中的發展概況,然后從基因表達及蛋白質—蛋白質相互作用研究方面,討論生物分子光學技術的特點與優勢,闡明基于分

    生物醫學光學技術

      摘 要:隨著生物分子光學標記技術的不斷進步,光學技術在揭示生命活動基本規律的研究中正發揮越來越重要的作用,也為醫學診斷與治療提供了更多、更有效的手段。本報告首先簡要介紹光學技術在生物醫學應用中的發展概況,然后從基因表達及蛋白質—蛋白質相互作用研究方面,討論生物分子光學技術的特點與優勢,闡明基于分

    量子點活細胞成像應用的實驗方案建議

       量子點(Quantum dot, QD)是一種新型熒光納米材料,又稱半導體納米晶,呈近似球形,三維尺寸在2-10nm,具有明顯的量子效應,其物理、光學、電學特性優于傳統有機熒光染料,是新一代熒光標記探針的優質選擇。    Chan等將量子點與傳統有機熒光染料進行了光學特性的比較,發現量子點的

    量子點活細胞成像應用的實驗方案

    量子點(Quantum dot, QD)是一種新型熒光納米材料,又稱半導體納米晶,呈近似球形,三維尺寸在2-10nm,具有明顯的量子效應,其物理、光學、電學特性優于傳統有機熒光染料,是新一代熒光標記探針的優質選擇。Chan等將量子點與傳統有機熒光染料進行了光學特性的比較,發現量子點的熒光亮度是傳統熒

    ACS Chem. Biol │ 基于分子邏輯門細胞內脂質單分子成像追蹤

      今天為大家介紹一篇ACS Chem. Biol.的文章 “A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains”,文章的通訊作者是來自瑞士洛桑聯

    布魯克收購納米分析儀器廠商JPK 以豐富生物學測量業務

      分析測試百科網訊 馬薩諸塞州──2018年7月12日,布魯克公司宣布收購位于德國柏林的JPK Instruments AG(JPK)。 2017年,JPK Instruments的收入約為1000萬歐元。JPK提供用于生物分子和細胞成像的顯微鏡檢測器,以及對單個分子,細胞和組織間作用力力測量。J

    超分辨顯微技術淺析

    光學顯微成像的衍射極限生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾物理學獎; Ruska

    圖像流式細胞儀——流式細胞術的最新突破

     ImageStream是一種臺式多譜段成像流式細胞儀(Multispectral Imaging Flow Cytometry),能夠同時采集6個檢測通道中的細胞圖像。它將流式細胞檢測與熒光顯微成像結合于一身,既能提供細胞群的統計數據,又可以獲得單個細胞的圖像,從而提供細胞形態學、細胞結

    質譜成像技術應用寶典

      現代生物學研究已經不再停留在僅從組織中識別一種特殊的化學成分,或者蛋白成分上了,我們需要精確的了解這些物質是如何分布,如何構成的,解答這些問題需要更進一步的實驗技術,比如免疫組化或免疫熒光檢測方法,但是這些技術需要特殊的抗體,而且效率低,偏差大。  因此研究人員將目光轉向了質譜技術上,以質譜為基

    首次實現同層超薄樣品的超分辨光鏡-電鏡關聯成像

      10月14日,中國科學院生物物理研究所徐濤課題組與徐平勇課題組合作,在Nature Methods上發表了題為mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM 的研究論文。他們發展了第一個

    Nature Methods:2016年最值得關注的八大技術

      《Nature Methods》盤點2015年度技術,選出了最受關注的技術成果:單粒子低溫電子顯微鏡(cryo-EM)技術。 除此之外,也整理出了2016年最值得關注的幾項技術,分別為:細胞內蛋白標記(Protein labeling in cells)、細胞核結構(Unraveling nuc

    淺談DeltaVision Elite活細胞成像系統

    我們知道以往的固定組織或固定細胞成像揭示了非常多的自然秘密,給了我們很大的啟示,但現在的科學研究則希望在最真實的條件下觀察細胞。縱觀顯微鏡的發展歷史,直到15年前,科學家主要還是處理死細胞。現在,活細胞研究的重要性已經越來越被意識到。加拿大McGill大學成像實驗室主任Claire M. B

    生物醫學光學技術(二)

    表1 主要成像技術及應用場合(Nature Reviews 2002)成像方法 主要應用場合磁共振成像(MRI) 高對比度,用于表型、生理成像和細胞跟蹤的最好的全方位成像系統。計算機層析成像(CT) 肺和骨癌成像超聲成像 血管和介入成像正電子發射斷層成像PET 分子代謝,如葡萄糖,胸腺嘧啶核苷等的成

    走近分子影像學

    分子影像學的出現是醫學影像學發展史上的又一個里程碑,國家科技部、衛生部、國家自然科學基金委對分子醫學、分子影像學的研究給予了高度的重視。然而,分子影像學畢竟是剛剛起步,極需多學科合作,尤其是跨學科間的交流與合作,才能促進分子影像學研究的順利開展。分子影像學概念分子影像學(molecular imag

    細胞原位鐵蛋白分子的磁性成像 分辨率推進到了10納米

      近日,中國科學院院士、中國科學技術大學教授杜江峰領導的中科院微觀磁共振重點實驗室成功研制細胞原位納米磁共振成像實驗平臺,與中科院院士、中科院生物物理研究所研究員徐濤合作,實現了對細胞原位鐵蛋白分子的磁性成像,將原位蛋白質磁成像分辨率推進到了10納米。該研究成果以Nanoscale magneti

    多光子顯微鏡成像技術:雙光子顯微鏡角膜成像

    角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。圖1 角膜的組織學結構上皮層負責阻擋異物落入角膜,厚約50μm,由三種細胞構成,從外到內依次是表層細胞、翼細胞和基底細胞。只有基底細胞可進行有絲分裂和分化,基底細胞的補充是由從角膜

    利用改進的CAR-T治療實體瘤大有可為

      CAR-T(Chimeric Antigen Receptor T-Cell Immunotherapy),即嵌合抗原受體T細胞免疫療法。該療法是一種出現了很多年但近幾年才被改良使用到臨床中的新型細胞療法。在急性白血病和非霍奇金淋巴瘤的治療上有著顯著的療效,被認為是最有前景的腫瘤治療方式之一。正

    國家基金委八大學部公布“優先發展領域及主要研究方向”

      “十三五”期間,通過支持我國優勢學科和交叉學科的重要前沿方向,以及從國家重大需求中凝練可望取得重大原始創新的研究方向,進一步提升我國主要學科的國際地位,提高科學技術滿足國家重大需求的能力。各科學部遴選優先發展領域及其主要研究方向的原則是:  (1)在重大前沿領域突出學科交叉,注重多學科協同攻關,

    中國著名留美女教授《科學》介紹新型探針

    來自哈佛大學化學與化學生物學系,分子與細胞生物學系,霍德華休斯醫學院的研究人員介紹了一組特殊的熒光探針家族,實現了多色隨機光學重建顯微法(multicolor stochastic optical reconstruction microscopy),并利用這種方法以20-30納米級別的分辨率演示了

    小動物活體成像技術概覽(二)

    光在哺乳動物組織內傳播時會被散射和吸收,光子遇到細胞膜和細胞質時會發生折射現象,而且不同類型的細胞和組織吸收光子的特性并不一樣。在偏紅光區域, 大量的光可以穿過組織和皮膚而被檢測到。利用靈敏的活體成像系統最少可以看到皮下的500個細胞,當然,由于發光源在老鼠體內深度的不同可看到的最少細胞數是不同

    活細胞成像技術--活細胞工作站介紹

    我們知道以往的固定組織揭示了非常多的自然秘密,給了我們很大的啟示,現在的科學研究則向在最真實的條件下觀察自然發展。縱觀顯微鏡的歷史,直到15年前,科學家主要還是處理死細胞。現在,活細胞的應用已經非常普及了。 加拿大McGill大學成像實驗室主任Claire M.Brown表示,要達到這個研

    推動翻譯分子成像邊界

      為了實現個體化醫療,需要對健康和疾病個體在分子層面上有全面的了解,質譜分析技術的發展,增加了我們對細胞生物學的知識。與健康細胞相比,這些技術能讓我們更深入地了解臨床樣本中的細胞會怎樣出現異常。近年來,要將這些分子特征轉化至臨床結果和治療方案,了解其分子的空間特性是非常必要的,并且這一趨勢越來越顯

    如何選購凝膠成像分析系統(三)

    (8)、軟件功能不論何種計算機,它們都是由硬件和軟件所組成,兩者是不可分割的。人們把沒有安裝任何軟件的計算機稱為裸機。凝膠成像分析系統也不例外,硬件設備再好,如果不配上好的軟件,也無法發揮它應有的功能。作為凝膠成像系統軟件功能和用途都基本相似,這里我們介紹一下最關注的幾個特點: A、軟件的基本功能:

    質譜成像技術的完美解釋

    現代生物學研究已經不再停留在僅從組織中識別一種特殊的化學成分,或者蛋白成分上了,我們需要精確的了解這些物質是如何分布,如何構成的,解答這些問題需要更進一步的實驗技術,比如,免疫組化或免疫熒光檢測方法,但是這些技術需要特殊的抗體,而且效率低,偏差大。因此,研究人員將目光轉向了質譜技術上,以質譜為基礎的

    1100學者齊聚杭州 第二屆質譜大會開幕

      分析測試百科網訊 2015年10月17日,第二屆全國質譜分析學術報告會(質譜大會)在浙江大學紫荊港校區體育館盛大開幕,本次大會由中國化學會、國家自然科學基金委員會主辦,中國化學會質譜分析專業委員會、浙江大學化學系承辦。浙江大學副校長羅建紅教授、南京大學陳洪淵院士、中

    新一代Nanoimager可輕松實現超分辨熒光成像

    近年來,隨著活細胞體系單分子熒光成像技術的發展,膜蛋白單分子研究,特別是受體動力學的研究,已成為目前單分子研究領域中最活躍的研究方向之一。近幾年發展起來的超分辨成像技術因其能夠突破光學衍射極限,而比傳統光學顯微鏡具有更高的分辨率和更高的定位精度。英國Oxford Nanoimaging公司最新推

    體內熒光成像技術的進展(三)

    成像新策略的出現改進探針親和性的多種途徑探針同靶點的緊密和特異性結合通常是成像成功的關鍵。因為許多成像靶點都位于細胞表面之外,所以多途徑原則可以用來改善探針的結合親和性。最近有兩篇文獻報道了用于異種移植腫瘤αvβ3 整合素(integrin)體內成像的RGD(Arg-Gly-Asp )寡肽的

    非侵入式光學成像檢測疾病的早期分子標記

      分析測試百科網訊 包括肥胖,心血管疾病和癌癥在內的慢性疾病通常始于細胞代謝的早期細微變化。現在,塔夫茨大學的研究人員開發了一種無創光學成像技術,可以檢測這些變化,為新研究和潛在的治療發展提供了一個早期的機會窗口。  “在出現可見的疾病癥狀和損傷之前,疾病始于與新陳代謝有關的分子的變化,這阻礙了組

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频