華東理工大學生物反應器工程國家重點實驗室的楊弋、朱麟勇等教授歷經7年合作研究,在熒光RNA及活細胞RNA成像領域獲突破性進展。他們原創的系列高性能熒光RNA,在國際上首次實現了不同種類RNA在動物細胞內的熒光標記與無背景成像。11月5日,該成果以封面論文形式發表于《自然—生物技術》。 熒光蛋白標記技術是蛋白質研究的巨大助力,其研究在2008年曾獲得諾貝爾獎。類似的,RNA研究也迫切需要這樣的顛覆性研究工具。但迄今為止,在自然界尚未發現天然存在的熒光RNA;而科學家們幾經努力人工合成的少數幾種熒光RNA又性能過低,難以實用。針對這一亟需解決的技術挑戰,楊弋、朱麟勇等組成了化學生物學與合成生物學聯合交叉攻關團隊,通過全新的分子設計及分子共同定向進化思路,首次獲得了系列高亮、穩定、低背景的熒光RNA。 這些熒光RNA結構緊湊,特異結合創新染料分子后產生強烈熒光,可具有藍、綠、黃、橙、紅等不同顏色,與五顏六色的辣椒相似,因此被命......閱讀全文
結合并激活熒光染料的適體熒光 RNA(FR)已用于對豐富的細胞 RNA 種類進行成像。然而,諸如低亮度和具有不同光譜特性的染料 / 適體組合的有限可用性的局限性,限制了這些工具在活的哺乳動物細胞和體內的使用。 2019 年 9 月 23 日,華東理工大學朱麟勇及楊弋共同通訊在 Nature B
活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進
2月18日,Angewandte Chemie International Edition 在線發表了中國科學院生物物理研究所王江云研究組題為A Covalent Approach for Site-Specific RNA Labeling in Mammalian Cells 的最新研究成果
量子點(Quantum dot, QD)是一種新型熒光納米材料,又稱半導體納米晶,呈近似球形,三維尺寸在2-10nm,具有明顯的量子效應,其物理、光學、電學特性優于傳統有機熒光染料,是新一代熒光標記探針的優質選擇。 Chan等將量子點與傳統有機熒光染料進行了光學特性的比較,發現量子點的
量子點(Quantum dot, QD)是一種新型熒光納米材料,又稱半導體納米晶,呈近似球形,三維尺寸在2-10nm,具有明顯的量子效應,其物理、光學、電學特性優于傳統有機熒光染料,是新一代熒光標記探針的優質選擇。Chan等將量子點與傳統有機熒光染料進行了光學特性的比較,發現量子點的熒光亮度是傳統熒
《Nature Methods》盤點2015年度技術,選出了最受關注的技術成果:單粒子低溫電子顯微鏡(cryo-EM)技術。 除此之外,也整理出了2016年最值得關注的幾項技術,分別為:細胞內蛋白標記(Protein labeling in cells)、細胞核結構(Unraveling nuc
生物大分子標記技術是生物分子成像的關鍵。在科學歷史上,人們利用熒光蛋白“點亮”細胞內蛋白質, 實現了生命動態過程中蛋白質分子的可視化。熒光蛋白技術是當代生物科學研究中最重要的研究工具之一;在短短十余年內,其研究即被授予諾貝爾獎。RNA同樣具有獨特的結構、種類繁多的生物學功能以及復雜的時間空間分
環狀RNA(circular RNA,circRNA)是一種新興的內源性非編碼RNA(noncoding RNA,ncRNA),是繼microRNA (miRNA)以及long noncoding RNA (IncRNA)后非編碼RNA家族中極具研究潛力的新成員。越來越多的研究表明,環狀RNA具
真核細胞轉錄組在三維空間中的分布特征對于基因表達具有重要調節作用。在記憶形成、胚胎發育、細胞增殖等一系列生理學過程中,細胞通過將特定RNA分子選擇性富集在亞細胞區域,能夠實現對蛋白質翻譯過程的精準調控,或幫助建立和維持染色體三維結構。因此,發展一種能在轉錄組層面解析細胞中RNA三維空間定位的方法
圖為《自然—生物技術》11月期封面圖片。它顯示了利用熒光RNA可對單細胞中mRNA的翻譯過程進行定量研究。癌細胞中mRNA水平與其編碼蛋白質水平之間存在較低相關性,提示癌細胞的翻譯調控顯著失調,這為癌癥的診療提供一種全新的思路。 華東理工大學生物反應器工程國家重點實驗室的楊弋、朱麟勇等教授歷經7年
小動物活體成像 主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學
小動物活體成像主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學檢測儀器,讓研究人員能夠直
成像新策略的出現改進探針親和性的多種途徑探針同靶點的緊密和特異性結合通常是成像成功的關鍵。因為許多成像靶點都位于細胞表面之外,所以多途徑原則可以用來改善探針的結合親和性。最近有兩篇文獻報道了用于異種移植腫瘤αvβ3 整合素(integrin)體內成像的RGD(Arg-Gly-Asp )寡肽的
2019年11月5日,華東理工大學生物反應器工程國家重點實驗室楊弋教授等在Nature Biotechnology(《自然—生物技術》)雜志上發表了封面學術論文,題為“Visualizing RNA dynamics in live cells with bright and stable fl
2019年11月5日,華東理工大學生物反應器工程國家重點實驗室楊弋教授等在Nature Biotechnology(《自然—生物技術》)雜志上發表了封面學術論文,題為“Visualizing RNA dynamics in live cells with bright and stable fl
分析測試百科網訊 2017年5月8日,由國際純粹與應用化學聯合會(IUPAC)和中國化學會(CCS)主辦的2017 年國際分析科學大會(ICAS 2017)光譜分析分會場的報告繼續進行。今天,5位學者向與會者分享了研究成果。湖南大學化學化工學院博士 應站明 湖南大學化學化工學院博士應站明的報告
光學成像可用于發育生物學,從而了解生物體的形成、揭示組織再生機制、認識并管理先天性缺陷和胚胎衰竭等。其中最受關注的兩個問題:一是心臟在早期發育中會發生劇烈的形態變化,其潛在功能和生物力學方面仍有待研究;二是中樞神經系統發育異常會導致先天性的疾病,所以需要從動力學、功能和生物力學等方面對大腦發
《自然—遺傳學》 科學家發現老年癡呆癥相關基因變異 據《自然—遺傳學》上的一項研究顯示,科學家們找到了阿爾茨海默氏癥(俗稱老年癡呆癥)的多個遺傳變異。 Philippe Amouyel等人開展了一項大范圍關聯分析,對17008名老年癡呆癥患者進行全基因組關聯研究,并選取37
(一)一般光學顯微鏡術應用一般光學顯微鏡(簡稱光鏡)觀察組織切片是組織學研究的最基本方法。取動物或人體的新鮮組織塊,先用固定劑(fixative)固定(fixation),使組織中的蛋白質迅速凝固,防止細胞自溶和組織腐敗。常用的固定劑如灑精、甲醛、醋酸、苦味酸、四氧化鋨等,一般常將幾種固定劑配制成混
在免疫療法時代,癌癥生物學家依靠新一代工具來了解腫瘤和免疫細胞之間的相互作用是如何影響疾病進程的。 雖然Sean Bendall是一名病理學家,但最近卻成了一名圖譜制作者,他使用尖端的蛋白質繪圖技術來描繪出腫瘤組織的變幻莫測的景觀。 這項技術由Bendall在加州斯坦福大學(Stanford
發表在《自然―方法學》上的一項報告介紹了一種用于人體活細胞內目標RNA成像的工具。這種針對RNA探針的被命名為Spinach2的工具,拓寬了可標記RNA的范圍,從而更有利于動態定位那些與疾病有關的“有毒RNA”。 Spinach是一種經過設計的RNA復合物,其可以與小型合成分子結
今年第一期《Nature Methods》評出了2015的年度技術——單顆粒冷凍電鏡(cryo-EM)。除此之外,該雜志還對一些熱門技術進行了一番展望,包括細胞內蛋白標記、精準光遺傳學、高多重成像、亞細胞圖譜分析等等。 熒光團之間的光譜重疊,是成像復雜生物學結構的一個主要障礙。這種限制讓絕大多
人類免疫缺陷病毒(human immunodeficiency virus, HIV),即艾滋病(AIDS,獲得性免疫缺陷綜合征)病毒,是造成人類免疫系統缺陷的一種病毒。1983年,HIV在美國首次發現。它是一種感染人類免疫系統細胞的慢病毒(lentivirus),屬逆轉錄病毒的一種。 IV通
在生物大分子中,核糖核酸(RNA)具有重要的生物學功能,也與人類重大疾病的發生和發展密切相關。人們利用熒光蛋白“點亮”細胞內蛋白質,實現了生命動態過程中蛋白質分子的可視化。與蛋白質相比,大部分種類的RNA結構和功能尚未被鑒定,被稱為基因組中的“暗物質”。科學家們一直試圖發展人工合成的熒光RNA,
分析測試百科網訊 北京市2018年度激光共焦超高分辨顯微學學術研討會在北京天文館舉行,會議由北京市電鏡學會和北京理化分析測試技術學會主辦。本次會議旨在推動激光共焦超高分辨顯微學的進步和發展,提高廣大相關工作者的學術及技術水平,促進上述學科在生命科學等領域中的應用、發展和交流。兩百余位專家學者、近
五、核酸分子雜交的類型 隨著基因工程研究技術的迅猛發展,新的核酸分子雜交類型和方法在不斷涌現和完善。核酸分子雜交可按作用環境大致分為固相雜交和液相雜交兩種類型。固相雜交是將參加反應的一條核酸鏈先固定在固體支持物上,一條反應核酸游離在溶液中。固體支持物有硝酸纖維素濾膜、尼龍膜、乳膠顆粒、磁珠和微孔板
五、核酸分子雜交的類型 隨著基因工程研究技術的迅猛發展,新的核酸分子雜交類型和方法在不斷涌現和完善。核酸分子雜交可按作用環境大致分為固相雜交和液相雜交兩種類型。固相雜交是將參加反應的一條核酸鏈先固定在固體支持物上,一條反應核酸游離在溶液中。固體支持物有硝酸纖維素濾膜、尼龍膜、乳膠顆粒、磁珠和微孔板
關于技術應用42. 可以用熒光素酶基因標記干細胞嗎?如何標記? 可以,標記干細胞有幾種方法。一種是標記組成性表達的基因,做成轉基因小鼠,干細胞就被標記了,從此小鼠的骨髓取出造血干細胞,移植到另外一只小鼠的骨髓內,可以用該技術示蹤造血干細胞在體內的增殖和分化及遷徙到全身的過程。另外一種方法是用慢病
血液是唯一與所有器官都有接觸的組織,攜帶著有關機體的大量寶貴信息。在理論上,檢測血液攜帶的 DNA、RNA、囊泡和細胞殘骸可以幫助人們診斷和監控各種疾病。 產前基因篩查是血液檢測的一個重要應用,通過分析孕婦血液中的胎兒DNA來鑒定染色體異常(比如唐氏綜合癥)。此外,越來越多的研究者開始關注血液
艾滋病毒基因組RNA逆轉錄為DNA,整合在宿主染色體內形成前病毒(HIV provirus),是根除艾滋病毒的最大障礙。在活細胞內對單拷貝或低拷貝的整合態HIV基因標記與成像,對前病毒的識別和切除具有重要意義,但一直是個難題。最近,中國科學院武漢病毒研究所研究員崔宗強與中國科學院生物物理研究所研