<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 新技術實現溶酶體功能超分辨熒光成像“精準定量”

    近日,中國科學院大連化學物理研究所研究員徐兆超團隊發展雙色單分子閃爍比率成像技術(2C-SMBR),在單溶酶體水平同步實現納米級結構成像與腔內pH準確定量。相關成果發表在《德國應用化學》。溶酶體作為細胞的“化工廠”與“信號樞紐”,其功能高度依賴于腔內pH的精確調控。傳統觀點認為,溶酶體是均質的酸性細胞器,然而,近年研究提示其存在功能異質性。例如,黑色素細胞中的黑素體、免疫細胞中的分泌性溶酶體均具有獨特的pH特征,甚至同一細胞內的經典溶酶體也可能因空間位置、運動狀態差異而承擔不同功能。解析上述異質性的核心挑戰在于技術手段的缺失——傳統群體測量方法只能提供細胞器群體的平均pH值,無法揭示單溶酶體水平的動態差異。而基于單分子定位的超分辨成像雖能追蹤單個溶酶體的運動與形態,卻難以同步測試腔內pH。徐兆超團隊此前開發的LysoSR-549探針和Aze-HMSiR,可通過pH依賴的自發閃爍特性,在單溶酶體水平關聯動態行為與相對pH變化。然而......閱讀全文

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    季銨哌嗪如何實現熒光超分辨率成像?

      近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    新一代Nanoimager可輕松實現超分辨熒光成像

    近年來,隨著活細胞體系單分子熒光成像技術的發展,膜蛋白單分子研究,特別是受體動力學的研究,已成為目前單分子研究領域中最活躍的研究方向之一。近幾年發展起來的超分辨成像技術因其能夠突破光學衍射極限,而比傳統光學顯微鏡具有更高的分辨率和更高的定位精度。英國Oxford Nanoimaging公司最新推

    新技術實現溶酶體功能超分辨熒光成像“精準定量”

    近日,中國科學院大連化學物理研究所研究員徐兆超團隊發展雙色單分子閃爍比率成像技術(2C-SMBR),在單溶酶體水平同步實現納米級結構成像與腔內pH準確定量。相關成果發表在《德國應用化學》。溶酶體作為細胞的“化工廠”與“信號樞紐”,其功能高度依賴于腔內pH的精確調控。傳統觀點認為,溶酶體是均質的酸性細

    光控熒光染料的超分辨成像研究獲新進展

    ??近日,華東理工大學費林加諾貝爾獎科學家聯合研究中心與中科院上海藥物研究所、國家蛋白質中心、美國得克薩斯大學奧斯丁分校以及英國巴斯大學合作,在酶激活型光控熒光染料的超分辨成像研究中取得重要進展,研究成果以“光致變色熒光探針策略實現生物標志物超分辨成像”為題發表于《美國化學會志》。 酶是人體不可

    山西大學最新文章;新型超分辨率熒光成像

      來自山西大學激光光譜研究所, 量子光學與光量子器件國家重點實驗室的研究人員將熒光探針分子ALEXA647標記在仿生水凝膠的聚合物鏈上, 利用全內反射熒光顯微鏡進行熒光成像, 并采用超分辨率光學波動成像的方法(SOFI)對仿生水凝膠的熒光成像進行超分辨率成像分析。 通過SOFI成像及反卷積處理獲得

    硬核!大連化物所指導開發超分辨成像自閃熒光染料

      近日,大連化物所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊與新加坡科技設計大學劉曉剛教授團隊合作,發現羅丹明染料開關環物種穩態下的吉布斯自由能的差值(ΔGC-O)同開環比例具有優異的線性關系(R2=0.965)。此線性關系可以定量地指導設計特定開環比例的羅丹明染料。  單分子定位超分

    前沿顯微成像技術專題——超分辨顯微成像(1)

    從16世紀末開始,科學家們就一直使用光學顯微鏡探索復雜的微觀生物世界。然而,傳統的光學顯微由于光學衍射極限的限制,橫向分辨率止步于 200 nm左右,軸向分辨率止步于500 nm,無法對更小的生物分子和結構進行觀察。突破光學衍射極限,一直是科學家們夢想和追求的目標。雖然隨著掃描電鏡、掃描隧道顯微鏡及

    前沿顯微成像技術專題——超分辨顯微成像(2)

    上一期我們為大家介紹了幾種主要的單分子定位超分辨顯微成像技術,還留下了一些問題,比如它的分辨率是由什么決定的?獲得的大量圖像數據如何進行重構?本期我們就來為大家解答這些問題。單分子定位超分辨顯微成像的分辨率單分子定位超分辨顯微成像的分辨率主要由兩個因素決定:定位精度和分子密度。定位精度是目標分子在橫

    高速圖像重建助力實時超分辨成像

    JSFR-SIM算法和傳統Wiener-SIM算法的重建流程對比示意圖。 JSFR-SIM可實時顯示微管和線粒體動態。 高速實時超分辨結構光照明顯微成像光路(a)和快速實時超

    高速圖像重建助力實時超分辨成像

    ? ? JSFR-SIM算法和傳統Wiener-SIM算法的重建流程對比示意圖。? ? JSFR-SIM可實時顯示微管和線粒體動態。? ? 高速實時超分辨結構光照明顯微成像光路(a)和快速實時超分辨結構光照明顯微成像系統樣機(b)。圖片來源:論文作者? ? 超分辨熒光顯微成像技術打破

    光致開關熒光探針用于微管蛋白的原位檢測和超分辨成像

    微管蛋白一直被認為是潛在癌癥化療的靶點。許多臨床數據表明:跟蹤微管蛋白的變化將有助于對癌癥治療。傳統的寬場光學顯微鏡的顯微分辨率受到衍射極限的限制,無法獲得細胞內的精細結構信息,大大降低了對微管蛋白類分子的觀察能力。遠場超分辨成像方法是近些年發展起來的利用熒光分子在納米級分辨率下對生物體內的相關物質

    大化所發展時空超分辨四維熒光成像解析全細胞溶酶體

    近日,我所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊發展了在酸性條件下,可自閃爍的單分子定位超分辨成像熒光探針LysoSR-549,實現了在12nm/20ms時空分辨率下,長達40分鐘的全細胞溶酶體解析。  長時間超分辨熒光成像對于揭示納米尺度的細胞器動力學和功能越來越重要,但由于缺乏高

    研究攻克超分辨長時程成像難題

    近日,哈爾濱工業大學李浩宇教授團隊在生物醫學超分辨顯微成像技術領域取得突破性進展。針對目前活體細胞超分辨成像領域中光子效率不足的難題,團隊提出一種基于無監督學習的自啟發去噪方法,通過無監督深度學習技術,在無需大訓練集和高信噪比真值圖像的條件下,將光子效率提升了兩個數量級,實現了在低光照條件下的溫和、

    超細內窺鏡動態超分辨成像方面研究新進展

      浙江大學及之江實驗室聯合團隊的楊青教授、劉旭教授在光場經復雜動態介質中的快速恢復及超分辨成像方面取得進展。研究結果以“單根多模光纖用于體內光場編碼內窺鏡成像(Single multimode fibre for in vivo light-field-encoded endoscopic ima

    用普通共聚焦顯微鏡實現超分辨率單分子熒光成像

    傳統的細胞及其內部分子顯微觀察通常使用熒光染料,然后再用不同分辨率的顯微術照亮單個分子和與其互動的其他物質。如下圖所示,普通共聚焦顯微鏡和超分辨率顯微鏡的精準度差異一目了然。(普通共聚焦顯微鏡觀察圖,比例尺10μm。圖片來自發表文章DOI: 10.1038/s41467-017-00688-0)(隨

    超分辨成像技術看清細胞“劊子手”的行刑過程

    近日,中國科學院院士、廈門大學教授韓家淮和廈門大學副教授陳鑫團隊借助單分子定位超分辨成像技術“隨機光學重建顯微鏡(STORM)”,首次揭示了“壞死小體”在細胞中的組織結構特征及其對細胞死亡的決定作用,為人類相關疾病治療干預提供了新思路。相關論文已在《自然·細胞生物學》上發表。超清成像技術讓推論“眼見

    超分辨成像探針和方法開發研究獲進展

      基于單分子定位的超分辨顯微成像技術PALM打破了光學衍射極限,于2014年獲得了諾貝爾化學獎。相對于目前廣泛使用的其它超分辨成像技術而言,該技術具有最高的空間分辨率(~20 nm),因此在生物學中帶來了廣泛的應用。但是由于該技術需要成千上萬張原始圖片來重構一張超分辨圖像,時間分辨率低,在活細胞中

    哈工大突破高通量超分辨顯微成像難題

      近日,哈爾濱工業大學儀器學院青年教授李浩宇團隊在生物醫學超分辨顯微成像技術領域取得突破性進展。針對目前超分辨顯微鏡所面臨的成像通量限制,團隊提出基于計算光學成像的新一代高通量三維動態超分辨率成像方法,通過計算成像技術增強熒光漲落探測靈敏度,使探測靈敏度提升兩個數量級以上,突破了現有顯微成像技術在

    超分辨光學顯微成像技術的新進展

    從17世紀開始,現代生物學的發展就與顯微成像技術緊密相關。然而,由于受光學衍射極限的影響,傳統光學顯微成像分辨率最小約為入射光波長的一半。因此,科學家們一直在不斷努力,試圖尋找突破光學顯微鏡分辨極限的方法。在超分辨顯微技術飛速發展的同時,現有成像技術的缺陷也日益顯現,例如成像分辨率和成像時間不可兼得

    超分辨熒光蛋白開發研究獲進展

      綠色熒光蛋白(GFP)的發明因其能夠提供對于活細胞和活體動物的靶向基因修飾標記而獲得2008年諾貝爾化學獎。進一步,由基因改造的光激活熒光蛋白(PA-FP)能夠提供單分子特性,而實現了超分辨顯微,使得這一技術獲得2014年諾貝爾化學獎。隨后,超分辨的發展向著活細胞動態超高時空分辨率顯微邁進。其中

    超快時間分辨熒光光譜儀

      超快時間分辨熒光光譜儀是一種用于化學領域的分析儀器,于2015年12月24日啟用。  技術指標  1.范圍:熒光測試波長范圍230-850nm;950~1700nm;熒光壽命范圍25ps-10s2.光源:,DeltaDiode-C1脈沖光源控制器(軟件控制)高頻脈沖光源DeltaDiode-28

    超分辨率熒光顯微技術的意義

    利用超高分辨率顯微鏡,可以讓科學家們在分子水平上對活體細胞進行研究,如觀察活細胞內生物大分子與細胞器微小結構以及細胞功能如何在分子水平表達及編碼,對于理解生命過程和疾病發生機理具有重要意義。

    我國學者在超細內窺鏡動態超分辨成像方面取得進展

      在國家自然科學基金項目(批準號:T2293751、T2293750)資助下,浙江大學及之江實驗室聯合團隊的楊青教授、劉旭教授在光場經復雜動態介質中的快速恢復及超分辨成像方面取得進展。研究結果以“單根多模光纖用于體內光場編碼內窺鏡成像(Single multimode fibre for in v

    大連化物所實現多種細胞器動態超分辨成像

    近日,我所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊發展了聚集體調控探針,解決了以往蛋白標簽熒光探針在超分辨成像應用中缺乏對多種細胞器通用性標記的問題。該探針基于遺傳編碼技術,實現了細胞內多種細胞器選擇性熒光識別的廣譜應用性,并且實現了細胞器亞結構的動態超分辨成像,進而揭示了多種未

    “光電融合超分辨生物顯微成像系統”獲驗收

      近日,國家重大科研儀器研制項目(部門推薦)“光電融合超分辨生物顯微成像系統”現場驗收會在北京召開。基金委副主任沈巖院士出席會議并發表講話。  根據《國家重大科研儀器設備研制專項實施管理工作細則》和《國家重大科研儀器研制項目驗收工作方案(試行)》要求,本次現場驗收考核專家組由重大科研儀器專項專家委

    “光電融合超分辨生物顯微成像系統”通過驗收

      2016年6月21日,國家重大科研儀器研制項目(部門推薦)“光電融合超分辨生物顯微成像系統”現場驗收會在北京召開。國家自然科學基金委員會(以下簡稱基金委)副主任沈巖院士出席會議并講話。基金委計劃局局長王長銳、生命科學部常務副主任杜生明研究員、生命科學部副主任馮雪蓮研究員、財務

    超分辨率熒光顯微技術的技術獲獎

    2014年10月8日,2014年度諾貝爾化學獎揭曉,美國科學家埃里克·白茲格、威廉姆·艾斯科·莫爾納爾和德國科學家斯特凡·W·赫爾三人獲得。官方稱,該獎是為表彰他們在超分辨率熒光顯微技術領域取得的成就 。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频