全球消滅天花等事件證明一個應對公共健康威脅的國際機制是可以起到作用的。我們必須進行嘗試,否則抗生素藥物所獲得的健康成果可能會因此消失。發展中國家不受管制的藥物銷售造成抗生素耐藥性的增加 上個月,世界衛生組織(WHO)制作了一張抗生素耐藥性的全球地圖,警告稱一個“后抗生素”的世界可能很快會成為現實。然而從某些方面來看,它已經到來了。 曾經有救命效果的藥物現在毫無作用。氯霉素曾是醫生治療傷寒的首選藥物,如今在世界很多地方已經無效了。廣泛耐藥結核(TB)株、耐甲氧西林金黃色葡萄球菌(MRSA)和多藥耐藥大腸埃希菌等都是公眾健康的嚴重威脅。每一類抗生素所對應的細菌耐藥性不斷增加,抗病毒、抗寄生蟲和抗真菌藥物也是如此。 情況可能變得更糟:常規醫療、外科手術、癌癥治療、器官移植和農業產業化等都不能缺少抗菌藥物;而且許多傳染人類和牲畜的疾病目前都依賴于一兩種藥物。 耐藥性在全世界傳播著。MRSA已經跨越了兩大洲,TB、瘧疾、HIV......閱讀全文
[提要] 自然界(非臨床環境)中本來就存在大量的“天然耐藥基因”,而人類對抗生素的濫用如同“篩選壓力”,選擇并進化這些整合有“耐藥基因”的病菌,使得后者最終成為人類的噩夢――臨床上的“耐藥菌”。 自然界(非臨床環境)中本來就存在大量的“天然耐藥基因”,而人類對抗生素的濫用如同“篩選壓力
1928年,英國微生物學家亞歷山大·費萊明首次從青霉菌中發現了具有抗金黃色葡萄球菌活性的青霉素,從此進入了抗生素的黃金時代。在第二次世界大戰中,青霉素作為一線藥用抗生素拯救了成千上萬人的性命,大大降低了由于傷口處細菌感染而引起的死亡幾率,因此名聲大噪的“神藥”青霉素的價格曾一度比黃金還要昂貴。此
近日,瑞典哥德堡大學抗生素耐藥性研究中心教授拉爾森等人在《微生物》期刊上發表的《人、動物和環境耐藥基因組的結構與多樣性》一文,經國內媒體報道后引發關注。有媒體稱,該研究表明,北京霧霾中發現耐藥菌,相比他國樣本,北京霧霾中含有“最多種類的抗生素耐藥基因”,且北京霧霾是唯一“含有碳青霉烯類抗生素耐藥
近年來由于抗生素的廣泛應用,細菌的耐藥問題越來越嚴重。歷史和現實的教訓告訴我們:任何一種抗生素一旦問世,很快就會產生耐藥株,產生耐藥株的時間周期短則幾年,長則十幾年(表1)。目前,細菌的耐藥問題已成為全球的嚴重問題,為此WHO專門發表了針對細菌耐藥問題的專家建議(WHO/CDS/CSR/DRS/20
9月21日,出席聯合國大會的193個成員國簽署宣言承諾加強管制抗生素,聯手減少“超級細菌”的傳播。 大約兩周之前,9月5日,在中國杭州落下帷幕的G20峰會發布了二十國集團領導人杭州峰會公報,其第四十六條明確指出,“我們將推動謹慎使用抗生素,并考慮在抗生素可負擔和可獲得性方面的巨大挑戰及其對公
阿莫西林、氟洛芬、林可霉素、青霉素、諾氟沙星……這些本應該出現在藥店貨架上的抗生素族群,卻出現在了養豬場附近的水體和土壤里。 近日,中國科學院廣州地球化學研究所應光國課題組發現常見養豬場處理單元對耐藥基因和抗生素去除效果不明顯,受納水土環境中依然能檢出大量的抗生素和相應的耐藥基因。 “養殖上
抗生素濫用或過度使用會引發一系列問題。近日,中國科學院微生物所朱寶利研究員帶領的研究團隊對中國、丹麥和西班牙人的腸道微生物耐藥基因進行了分析,結果發現,中國人腸道微生物的耐藥基因類型較多,而且這三個國家的人群,腸道微生物的四環素耐藥基因型都很高。科研人員據此推測,這種情況的產生很可能與獸用抗生素
10月26日,寧夏兩名患兒被檢測出帶有超級細菌NDM-1,它能抵抗絕大多數抗菌藥物。有專家表示,超級耐藥細菌的出現,讓人們正視這樣一個現實,中國已經是世界上抗生素濫用最嚴重的國家之一。 調查發現,抗生素在生活中廣泛存在,除了藥房存在違規處方類抗生素,醫院也會為回扣或防患未然而不合理使用抗生素;
“北京霧霾中有耐藥細菌!”最近幾天籠罩霧霾的北京市民又一次這條朋友圈的消息震驚了! “耐藥細菌”不就是俗稱的“超級細菌”嗎?這項來自瑞典哥德堡大學的研究成果,論文標題為“The structure and diversity of human, animal and environmental
美國疾病控制與預防中心(CDC)3日發布《生命征象》(Vital Signs)報告稱,在一項“噩夢細菌”的測試中,該機構發現200多種罕見的抗生素耐藥基因。 據美國有線電視新聞網消息,美國疾病控制與預防中心3日發布報告指出,該機構于2017年在美國的醫院和療養院中抽取5776株“噩夢細菌”作檢
2010年9月9日,北京,北京大學臨床藥理研究所的研究人員在讀取實驗結果。北大第一醫院是19家“超級細菌”監測哨點之一。 最近在我國檢測出的“超級細菌”呈現出“來路不明,致病性不強”的特點,但“超級細菌”的真正威脅在于“耐藥性”的傳播,而非“致病力”的強弱。 自8
細菌耐藥性是細菌對抗生素的相對的一種抗性。那么,細菌的耐藥性是如何形成的?中國藥學會科技開發中心特聘專家周筱青在進行題為《細菌耐藥性和抗菌藥物》的講座時詳述了細菌產生耐藥性的兩種方式,并強調濫用抗生素可造成細菌耐藥性的發生。1996年到2000年5年間僅有6種抗生素問世,如何將現有抗生素合理應用
合理使用就不會產生耐藥性 抗生素濫用不只是過度使用,準確地說是不規范使用。該用的抗菌藥物一定要用,不該用的一定別用,最忌諱“溫柔一刀” 北京大學第一醫院抗感染科主任醫師鄭波在出門診時,好幾位患者來詢問:自己是不是感染了超級細菌?怎么吃了頭孢拉定、鹽酸左氧氟沙星等好幾種消炎藥都不見好
11月7日,衛生部全國細菌耐藥監測網負責人肖永紅教授表示,針對目前醫生多憑經驗用藥的現狀,我國衛生部門已著手制定抗菌藥物的管理辦法。此次國內報告的兩例嬰兒身上攜帶的NDM-1酶屎腸球菌病例,有可能是在醫院內的環境中感染,這說明這種耐藥基因可能是我們在用藥的過程中產生的。 肖永紅表示,
昨天,衛生部全國細菌耐藥監測網負責人肖永紅教授表示,針對目前醫生多憑經驗用藥的現狀,我國衛生部門已著手制定抗菌藥物的管理辦法。 此次國內報告的兩例嬰兒身上攜帶的NDM-1酶屎腸球菌病例,有可能是在醫院內的環境中感染,這說明這種耐藥基因可能是我們在用藥的過程中產生的。 肖永紅表示,“超
日前,中國工程院院士、藥物研究專家楊勝利做客由廣州市科信局、廣東科學中心等主辦的“珠江科學大講堂”,分析“轉化醫學”的現狀與未來發展方向。 據楊勝利透露,我國將在今年內推出“抗生素耐藥芯片”,該芯片可快速檢測出病人對哪種抗生素耐藥,醫生開藥時可更有針對性。 疾病易感性預測芯
10月26日,中國疾病預防控制中心公布,在對既往收集保存的菌株進行監測中,發現了3株NDM-1基因陽性細菌(即超級細菌)。 自從8月國外報道有患者感染攜帶NDM-1基因細菌以來,中國有沒有“超級細菌”(Superbug)的問題就是公眾的關注焦點,直到此次公布之前一星期,中國的官方說法
11月7日,衛生部全國細菌耐藥監測網負責人肖永紅教授表示,針對目前醫生多憑經驗用藥的現狀,我國衛生部門已著手制定抗菌藥物的管理辦法。 此次國內報告的兩例嬰兒身上攜帶的NDM-1酶屎腸球菌病例,有可能是在醫院內的環境中感染,這說明這種耐藥基因可能是我們在用藥的過程中
瑞典研究人員在日前的一篇論文中提到,從北京一次霧霾天的14份空氣樣本中檢測出抗生素耐藥性基因。國內有媒體在報道中就此推論出呼吸這樣的空氣會導致藥物失去作用的結論。消息一出,引發輿論廣泛關注,有人甚至擔心呼吸這樣的空氣會被感染致病。那么,真會如此嗎?本報帶你一起探究真相。 疑問:空氣中的耐藥基因
“十年之前,我開始涉足環境細菌耐藥這個新領域,十年之間,我集中精力做好這一件事。”南開大學環境科學與工程學院教授羅義,是一位美麗而知性的博士生導師,同時堅韌而刻苦。 十年之間,她掀開了耐藥細菌進入環境的面紗,讓國內外相關學者第一次關注到這個神秘的領域。 抗生素作為人類醫學的重要發明,問世以來
最近,“超級細菌”肆虐,據報道,一些赴印度接受治療的患者感染了一種新型超級細菌,其含有一種叫NDM-1的基因。這種細菌對現有的絕大多數抗生素都“刀槍不入”,甚至對碳青霉烯類抗生素也具有耐藥性,而碳青霉烯類抗生素通常被認為是緊急治療抗藥性病癥的最后方法。這種變種超級細菌目前已經傳播到英國
7月24日,協和醫院、同仁醫院等50余家三甲醫院的300名醫生參加了由衛生部、北京市衛生局主辦的“抗菌藥物臨床合理應用培訓”,旨在有效遏制細菌耐藥的威脅。目前,我國使用量、銷售量排在前15位的藥品,有10種是抗生素—— 抗生素和合成抗菌藥物的發明應用是醫藥領域最偉大的成就之一,但細菌耐藥現
作者:劉蓬蓬,李偉,翟贊亮,徐志靜,黃偉麗 (青島大學醫學院附屬醫院檢驗科,山東 青島 266003;青島市婦女兒童醫療保健中心檢驗科;青島市人民醫院內科;青島市四方區醫院)[摘要] 目的 了解自身免疫病病人革蘭陽性球菌感染種類、分布及耐藥狀況,為臨床合理使用抗
根據國家自然科學基金委員會(NSFC)與英國國家科研與創新署(UKRI)共同組織的研討會所確定的合作內容, 2018年,雙方共同資助中英雙方科學家在“抗生素耐藥”領域(Antibacterial Resistance)開展的實質性合作研究項目。經過公開征集,我委共收到23項申請,經初步審查并與英
7月24日,協和醫院、同仁醫院等50余家三甲醫院的300名醫生參加了由衛生部、北京市衛生局主辦的“抗菌藥物臨床合理應用培訓”,旨在有效遏制細菌耐藥的威脅。目前,我國使用量、銷售量排在前15位的藥品,有10種是抗生素―― 抗生素和合成抗菌藥物的發明應用是醫藥領域最偉大的成就之一,
1、如果葡萄球菌對慶大霉素耐藥,則該菌同時對除外鏈霉素以外的氨基糖苷類抗生素耐藥。2、如果葡萄球菌對青霉素耐藥或!內酰胺酶陽性,并對苯唑西林耐藥則表現為對全部β內酰胺類抗生素呈多重耐藥性。應對全部β內酰胺類抗生素的結果進行修正,判定為耐藥。3、如果葡萄球菌對青霉素耐藥或β內酰胺酶陽性,對苯唑西林敏感
[提要] 1928年弗萊明發明青霉素對細菌感染有效以前,人體死亡的第一位原因是細菌感染(各種炎癥)。由此看見,《柳葉刀傳染病》雜志報道的這種“超級細菌”只是多年來抗生素與細菌之間較量史上的一曲而已。 紀小龍(武警總醫院病理科主任、博士生導師) 1928 年弗萊明發明青霉素對細
1928年弗萊明發明青霉素對細菌感染有效以前,人體死亡的第一位原因是細菌感染(各種炎癥)。千百年來,大量的細菌感染曾是無藥可治的絕癥,造成了難以計數的人類死亡。自從青霉素揭開了抗菌藥物家族拯救人類生命開端,人類平均壽命至少增加10多歲。于是,人們樂觀地認為,抗生素已經徹底解決了細菌感染的問題。
養豬場污染鏈 為了讓豬長得快且貌似健康,過量的抗生素、重金屬進入了養豬場。這些錯誤溢出養殖業后,直接增加了人類食品安全和健康風險 一種新型污染正引起越來越多的關注。它產自養殖業,流到環境中,游離于各國現有污染物排放清單之外,卻給人類帶來真實的威脅。 一個中美聯合研究團隊調查了三個
1. 什么是耐藥細菌? 抗菌藥物通過殺滅細菌發揮治療感染的作用,細菌作為一類廣泛存在的生物體,也可以通過多種形式獲得對抗菌藥物的抵抗作用,逃避被殺滅的危險,這種抵抗作用被稱為“細菌耐藥”,獲得耐藥能力的細菌就被稱為“耐藥細菌”。 2. 耐藥細菌是從哪里來的?是天然存在的還是物種進化的結果?