<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    首個可用的人造細菌菌株制造成功應用潛力巨大

    據美國物理學家組織網9月21日報道,美國科學家通過將非天然的氨基酸(除20種用作生物基礎元件的天然氨基酸之外的人造氨基酸)整合入蛋白質的多處,成功制造出了新的人造細菌菌株,其可廣泛應用于藥物研發、藥物合成、生物燃料等領域。研究發表在9月18日出版的《自然·化學生物學》雜志上。 該研究的領導者、加州薩克生物研究所化學生物學和蛋白質組學實驗室的助理教授王磊(音譯)表示:“最新研究向我們展示了新的可能性,包括研制出能在血管中持續更長時間的藥物,或采用一種更環保的方式制造化學物質等。” 添加非天然氨基酸讓蛋白質功能更強 2001年,王磊和同事首次制造出了蛋白質中整合了非天然氨基酸的細菌;2007年,他們首次在哺乳動物細胞上運用了這項技術。首先,他們制造出了一個“擴展的遺傳代碼”,并用其覆蓋哺乳動物細胞的遺傳代碼,并指導細胞在蛋白質的構建過程中使用人造氨基酸,從而將人造氨基酸整合進蛋白質中。 王磊解釋道,添加非天然氨基酸會改變......閱讀全文

    《環球科學》2011年十大科學新聞評選

      “十大科學新聞”評選是《環球科學》(《科學美國人》雜志中文版)每年一度的重頭戲,也是本年度全球各大科學領域的重大事件進行的一次全面盤點。經過專業編輯和專家團隊的商討,《環球科學》初步挑選出了30條候選新聞,接受網友的點評和投票。  1、超光速粒子挑戰愛因斯坦相對論  9月23日,歐洲核子研究中心

    人工合成生命的時代要來了?

      在我們生存的自然界里,除了單細胞生物、少數低等生物,絕大多數的生物從小到大都遵循著一個相同的規律——由一個受精卵發育形成。  就像是父母的精卵結合,產生了受精卵,受精卵開始快速的生長分裂,經歷四細胞期、八細胞期后形成桑椹胚,直到胚胎干細胞有了明顯的分化進而發育成囊胚,原腸胚,最后發育成一個各器官

    液相芯片技術的原理與應用

    液相芯片,也稱為微球體懸浮芯片(suspension array,liquid chip),是基于xMAP(flexible MultiAnalyte Profiling)技術的新型生物芯片技術平臺,它是在不同熒光編碼的微球上進行抗原抗體、酶底物、配體

    液相芯片技術的原理與應用進展

       液相芯片,也稱為微球體懸浮芯片(suspension array,liquid chip),是基于xMAP(flexible Multi Analyte Profiling)技術的新型生物芯片技術平臺,它是在不同熒光編碼的微球上進行抗原 抗體、酶 底物、配體 受體的結合

    用于外源蛋白質生產的細菌表達系統

    細菌表達系統有各種各樣的載體和宿主菌可供選擇,大部分工程菌的增殖時間短, 不僅便于快速評價實驗結果,而且降低了技術和設備無菌要求的嚴格性。經過簡單的調整, 許多在實驗室規模下具有的這些內在優點在大規模的自動生產過程中也具有 。實驗步驟一、使用大腸桿菌生產外源蛋白有越來越多的細菌表達系統可用于外源蛋白

    用于外源蛋白質生產的細菌表達系統

                實驗方法原理 實驗步驟 一、使用大腸桿菌生產外源蛋白 有越來越多的細菌表達系統可用于外源蛋白的生產。影

    2018年糖尿病專題盤點

      2018年即將過去,年末為大家獻上生物谷本年度糖尿病專題盤點,希望讀者朋友們能夠喜歡。1. Nature:利用細胞替換療法治療1型糖尿病取得重大進展!胞外基質組分決定著胰腺祖細胞的命運DOI: 10.1038/s41586-018-0762-2  I型糖尿病是一種自身免疫性疾病,它會破壞胰腺中產

    年終盤點:2016年國內不容錯過的重磅生物研究

      時間總是過得很快,2016年馬上就要過去了,迎接我們的將是嶄新的2017年,2016年,我國有很多優秀科研機構的科學家們都做出了意義重大、影響深遠的研究成果,發表在國際頂級期刊上。本文中小編盤點了2016年我國科學家發表的一些重磅級研究,以饕讀者。   --結構生物學 --  1.清華大學 施一

    盤點2014年度十大改變世界的革命性技術

      基因編輯更快更準更簡單  1973年,斯坦利?N?科恩(Stanley N. Cohen)和赫伯特?W?博耶(Herbert W. Boyer)找到了改變生物體基因組的方法,成功將蛙的DNA插入到細菌中。20世紀70年代末,博耶的基因泰克(Genetech)公司對大腸桿菌進行基因改造,使其帶有一

    2019年8月CRISPR/Cas最新研究進展

      基因組編輯技術CRISPR/Cas9被《科學》雜志列為2013年年度十大科技進展之一,受到人們的高度重視。CRISPR是規律間隔性成簇短回文重復序列的簡稱,Cas是CRISPR相關蛋白的簡稱。CRISPR/Cas最初是在細菌體內發現的,是細菌用來識別和摧毀抗噬菌體和其他病原體入侵的防御系統。圖片

    合成生物學:在分子水平調控生命系統 香山科學會議記

    “比起當前的轉基因、基因工程等技術,合成生物學的研究更前衛,代表了下一代生物技術。”在日前舉行的以“合成生物學”為主題的第322次香山科學會議上,會議執行主席、中國科學院院士、天津大學研究員張春霆說。 來自國內外的40多位專家就“重塑生命”的相關話題展開了熱烈討論。這一領域被認為充滿了人類的奇思妙

    細菌學診斷新技術

     隨著現代科學技術的不斷發展,特別是免疫學、生物化學、分子生物學的不斷發展,新的細菌診斷技術和方法已廣泛用于食品微生物的鑒別。傳統的細菌分離、培養及生化反應,已遠遠不能滿足對各種病原微生物的診斷以及流行病學的研究。近年來國內外學者不斷努力,已創建不少快速、簡便、特異、敏感、低耗且適用的細菌學診斷方法

    1100學者齊聚杭州 第二屆質譜大會開幕

      分析測試百科網訊 2015年10月17日,第二屆全國質譜分析學術報告會(質譜大會)在浙江大學紫荊港校區體育館盛大開幕,本次大會由中國化學會、國家自然科學基金委員會主辦,中國化學會質譜分析專業委員會、浙江大學化學系承辦。浙江大學副校長羅建紅教授、南京大學陳洪淵院士、中

    細菌學診斷中的新技術

    隨著現代科學技術的不斷發展,特別是免疫學、生物化學、分子生物學的不斷發展,新的細菌診斷技術和方法已廣泛用于食品微生物的鑒別。傳統的細菌分離、培養及生化反應,已遠遠不能滿足對各種病原微生物的診斷以及流行病學的研究。近年來國內外學者不斷努力,已創建不少快速、簡便、特異、敏感、低耗且適用的細菌學診斷方法,

    從人類基因組到人造生命:克雷格·文特爾領路生命科學

      5 展望  當生命科學進入后基因組時代的第10年,合成生物學也在Craig Venter等人的一個個創新與突破中走過了10個年頭。今天,“人造細胞”的成功見證了合成生物學領域由無機到有機,從基因組到細胞的又一次飛越。讓人不禁感嘆現代生物科技的高度發達。這一研究成果與其說是人類征服自然過

    美國化學會C&EN評選出2015年頂級化學成果

      新年將至,又到了年終盤點的時候。美國化學會(ACS)旗下的C&EN網站也端出了一席年終大餐:2015年化學領域最受矚目的研究成果。其實,在過去的這一年中一直關注X-MOL的讀者朋友也許會發現,其中絕大多數成果已經在X-MOL平臺報道過了。不過,我們覺得,在這節日的氣氛中,讓這一

    盤點:2015年醫學與生物學取得重大進展的國家Top10

      美國  人腦研究取得新成果,醫學與疾病防治取得多項重大突破,合成生物學成果紛呈。  2015年,美國科學家在人腦研究領域取得重大突破:8月,俄亥俄州立大學在實驗室中培育出近乎完全成型的人類大腦,盡管它只有鉛筆上橡皮擦那么大,發育程度與一個5周大胎兒的大腦相當,尚沒有任何意識,但具備人腦絕大多數細

    生物谷7月份結構生物學研究進展一覽

      1. Cell:中科院生物物理所王艷麗/章新政課題組從結構上揭示Cas13a切割RNA機制  doi:10.1016/j.cell.2017.06.050  CRISPR/Cas系統是目前發現存在于大多數細菌與所有的古菌中的一種免疫系統,被用來識別和摧毀抗噬菌體和其他病原體入侵的防御系統。在CR

    選擇重組蛋白表達的合適方法

    重組蛋白是研究生物學過程的重要工具。需要使用表達系統來對其進行制備。合適表達系統的選擇取決于重組蛋白的特性、重組蛋白的預期應用以及該系統能否生產足夠量的蛋白質。作者: 伯吉斯等,主譯:陳薇,本實驗來自「蛋白質純化指南」實驗步驟一、引言選 擇 合 適 醜 組 蛋 白 表 達 方 法 對 于 能 否 及

    人工合成4條酵母染色體我國科學家開啟“再造生命”新紀元

      大姑娘出嫁——頭一回!3月10日出版的國際頂級學術期刊《科學》,以封面的形式同時刊發了中國科學家的4篇研究長文!  由天津大學、清華大學和華大基因分別完成的這4篇長文,介紹了真核生物基因組設計與化學合成方面的系列重大突破:完成了4條真核生物釀酒酵母染色體的從頭設計與化學合成——要知道,釀酒酵母總

    2016年中國、世界十大科技進展新聞揭曉

       由中國科學院、中國工程院主辦,中國科學院學部工作局、中國工程院辦公廳、中國科學報社承辦,中國科學院院士和中國工程院院士投票評選的2016年中國十大科技進展新聞、世界十大科技進展新聞,2016年12月31日在京揭曉。  入選新聞囊括了一年來最重要的科學發現和技術突破。  入選的2016年中國十大

    遺傳學大牛Science重磅成果:改寫活體基因組

      遺傳密碼通常包含64個密碼子, 但現在來自哈佛大學的研究人員和同事們設計出了只包含57個密碼子的大腸桿菌基因組。在發表于8月18日《科學》(Science)雜志上的一篇論文中,該研究小組描述了這一計算機生成的基因組,并報告了在實驗室中合成它的第一階段。  論文的共同作者、哈佛大學George C

    科學看待生命“被制造”

      小細菌、新系統、大產業  重新設計、制造新的生物系統,使解決能源、材料、健康和環保等問題不再是神話  科學技術的進展推動人類社會向前發展,使人類擺脫落后的生產和生活方式,并創造了巨大的社會財富。但與此同時也產生了一系列問題,如能源危機、環境污染、氣候變化和生態失衡等重大災難,這成為制約人類社會發

    納米二次離子質譜技術在 微生物生態學研究中的應用

    納米二次離子質譜技術(NanoSIMS)在 微生物生態學研究中的應用氮(N)、碳(C)、硫(S)等生命元素的生物地球化學循環過程主要由微生物所驅動。 耦合分析自然環境中 微生物遺傳多樣性與其代謝多樣性是當今微生物生態學研究的難點和熱點。 自然環境中的微生物多樣性極 為豐富,每噸土壤中的微生物類

    酵母雙雜交技術及其在蛋白質組研究中的應用

    摘要  蛋白質組學是在后基因組時代出現的一個新興的研究領域, 它的主要任務是識別鑒定細胞、組織或機體的全部蛋白質, 并分析蛋白質的功能及其模式。 因此, 揭示蛋白質組中蛋白質間的相互作用關系也是蛋白質組學的重要內容之一。 酵母雙雜交技術是用來檢測蛋白質間是否相互作用的一

    包涵體的純化和復性總結

    關于包涵體的純化是一個令人頭疼的問題,包涵體的復性已經成為生物制藥的瓶頸,關于包涵體的處理一般包括這么幾步:菌體的破碎、包涵體的洗滌、溶解、復性以及純化,內容比較龐雜 一、菌體的裂解 1、怎樣裂解細菌?  細胞的破碎方法  1.高速組織搗碎

    酵母雙雜交技術及其在蛋白質組研究中的應用

         作為后基因組時代出現的新興研究領域之一, 蛋白質組學(proteomics)正受到越來越多的關注。 蛋白質組學的研究目標是對機體或細胞的所有蛋白質進行鑒定和結構功能分析。 蛋白質組學的研究不局限任何特定的方法。 高分辨率的蛋白質分離技術如二維凝膠電泳和高效液相

    質譜技術在臨床診斷領域的應用趨勢

      質譜技術是過去幾十年中受到臨床實驗室認可并快速發展的最新技術, 近十年來影響了醫學及臨床實踐的諸多領域。氣相色譜質譜(gas chromatography/mass spectrometry, GC/MS)技術最早被應用于各類臨床檢測, 此后各類型質譜技術被不同應用領域所接受, 包括毒理學、微生

    【分享】幾種常用的蛋白標簽的功能和優點

      重組蛋白表達技術現已經廣泛應用于生物學各個具體領域。特別是體內功能研究和蛋白質的大規模生產都需要應用重組蛋白表達載體。本文將簡要介紹幾個常用的蛋白標簽及其功能和優點。  一. GST標簽  GST(谷胱甘肽巰基轉移酶) 標簽蛋白本身是一個在解毒過程中起到重要作用的轉移酶,它的天然大小為26KD。

    Nature:第一個完全合成且徹底改變DNA密碼的生物誕生了

      發表在《Nature》上的一項研究顯示,英國劍橋大學的科學家已經在實驗室成功創造了世界上第一個完全合成并且徹底改變DNA密碼的生命體。它是普遍存在于土壤和人類腸道中的大腸桿菌(Escherichia coli),與其天然近親相似,但依靠一套較小的遺傳指令存活。  這種細菌的存在證明,生命可以存在

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频