實驗方法原理 在保持組蛋白和DNA聯合的同時,通過運用對應于一個特定組蛋白標記的生物抗體,染色質被切成很小的片斷,并沉淀下來。IP是利用抗原蛋白質和抗體的特異性結合以及細菌蛋白質的“prorein A”特異性地結合到免疫球蛋白的FC片段的現象活用開發出來的方法。目前多用精制的prorein A預先結合固化在argarose的beads上,使之與含有抗原的溶液及抗體反應后,beads上的prorein A就能吸附抗原達到精制的目的。實驗材料 細胞樣品試劑、試劑盒 甲醛甘氨酸PBSSDS Lysis Buffer洗脫液RNaseA蛋白酶Komega膠回收試劑盒儀器、耗材 離心管超聲儀電泳儀離心機實驗步驟 一、細胞的甲醛交聯與超聲破碎(第一天) 1. 取出1平皿細胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的終濃度為1%(培養基共有9 ml)。&n......閱讀全文
隨著人類基因組測序工作的基本完成,功能基因組學逐漸成為研究的熱點。而基因表達的調控又是功能基因組學的一個重要研究領域,要想提供蛋白因子直接調控的證據,需要直接檢測蛋白質-DNA的相互作用,而染色質免疫沉淀技術(Chromatin Immunoprecipitation,ChIP)就是一種研
真核生物的基因組DNA以染色質的形式存在,研究蛋白質與DNA在染色質環境下的相互作用是闡明真核生物基因表達機制的基本途徑。與傳統的EMSA技術相比,染色質免疫沉淀技術(ChIP)能真實完整地反映結合在DNA序列上的調控蛋白,是目前研究體內DNA與蛋白質相互作用的最佳方法。染色質免疫沉淀技術(chro
染色質免疫沉淀技術(Chromatin Immunoprecipitation,簡稱ChIP)是研究體內蛋白質與DNA相互作用的一種技術。它利用抗原抗體的特異性反應,可以真實地反映體內蛋白分子與基因組DNA結合的狀況。下面我們就最基本的實驗步驟,實驗中的小技巧以及需要注意的問題簡單介紹一下。1.
染色質免疫共沉淀測序(ChIP-Seq)是指對染色質免疫共沉淀(ChIP)獲得的DNA片段進行大規模測序,并能把所研究蛋白的DNA結合位點精確定位到基因組上。Roche GS FLX Titanium 、Illumina Hiseq2000和AB SOLID 4 這3種測序技術均可以用于ChIP-
“Cell Press Selections”是由Cell出版社推出的一份推薦文章集合手冊,主要介紹某個生命科學研究領域最新的進展及突出成果。相關特輯內容包括研究論文,評論性文章以及snapshots,涉及了同一領域的方方面面,更為重要的是這些文章由贊助商贊助,可以免費獲取。 蛋白與DNA之間
作為研究基因表達調控的重要方法,近年來染色質免疫共沉淀得到了越來越廣泛的應用,但有關將乳腺組織作為ChIP材料的研究及其方法尚未見報道。 近期來自廣西大學亞熱帶農業生物資源保護與利用國家重點實驗室等處的研究人員提出了一種新型乳腺組織染色質免疫共沉淀方法,這種方法獲得的DNA樣品中, 靶序列得到
ChIP技術的原理在生理狀態下把細胞內的DNA與蛋白質交聯在一起,通過超聲或酶處理將染色質切為小片段后,利用抗原抗體的特異性識別反應,將與目的蛋白相結合的DNA片段沉淀下來,以富集存在組蛋白修飾或者轉錄調控的DNA片段,再通過多種下游檢測技術(定量PCR、基因芯片、測序等)來檢測此富集片段的DNA序
染色質(Chromatin)最早是1879年Flemming提出的用以描述核中染色后強烈著色的物質。現在認為染色質是細胞間期細胞核內能被堿性染料染色的物質。染色質的基本化學成分為脫氧核糖核酸核蛋白,它是由DNA、組蛋白、非組蛋白和少量RNA組成的復合物。染色質是真核生物基因組DNA存在的主要形式。因
蛋白質和DNA的相互作用是調控細胞反應過程的要素之一。染色質免疫沉淀分析方法(chromatin immunoprecipitation, CHIP)是研究活體內DNA和蛋白質的相互作用的最新最有力的研究工具。CHIP技術通過三大步驟實現:第一,甲醛固定后染色質分離和斷片;第二,運用特異蛋白
染色質免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究體內DNA與蛋白質相互作用的重要工具。它可以靈敏地檢測目標蛋白與特異DNA片段的結合情況,還可以用來研究組蛋白與基因表達的關系。核小體組蛋白可以發生多種翻譯后的共價修飾,如乙酰化、甲基化、磷酸化、泛素化等,這些
EpiQuik?植物染色質免疫沉淀試劑盒包括全套的試劑,允許試驗者有效地在體內研究蛋白-DNA相互關系。整個過程可以在6小時內完成,產品效果遠遠優于任何競爭對手的試劑盒。EpiQuik?植物染色質免疫沉淀試劑盒適用于將特異性免疫沉淀與定性和定量PCR、ChIP-Seq、ChIP-on-chip結合使
現代分子生物學和免疫學的進展加深了我們對許多疾病的了解,并且導致了免疫新策略的產生,免疫學檢測方法可分為體液免疫和細胞免疫測定。本文盤點了與免疫學有關的分子生物學實驗技術匯總。 一、GST pull-down實驗 GST是指谷胱甘肽巰基轉移酶,GST pull-down實驗是一個行之有效的驗
我們的HA-PrecipHen?由共價附著于瓊脂糖珠上的雞抗HA表位標簽抗體制成。它設計用于在免疫沉淀(IP),染色質免疫沉淀(ChIP)和蛋白質純化應用中與HA表位標記的蛋白質一起使用。我們的IgY-PrecipHen?由山羊抗雞IgY制成。共價附于瓊脂糖珠的抗體。它設計用于免疫沉淀(IP),染色
摘要: 闡明染色質復雜結構的技術有染色質構象捕獲(chromatin conformation capture, 3C)及更高通量的衍生技術4C、5C,這些提供了長距離的染色質相互作用,但不能擴展到整個染色質相互反應組。在2009年末,兩種新方法的迸發,有望繪出全基因組范圍的相互作用圖譜。
ChIP(染色質免疫沉淀)方法是研究活體“蛋白質-DNA”相互反應的一種非常強大的工具。目前,這種方法用于染色質結構的動力學研究、轉錄因子的調節和輔助調節因子及其他表觀遺傳變化的研究。ChIP的使用過程分為三個主要步驟:第一步,在甲醛固定后分離和破碎染色質;第二步,使用感興趣的蛋白的抗體完成特定染色
染色質免疫共沉淀實驗方法原理在保持組蛋白和DNA聯合的同時,通過運用對應于一個特定組蛋白標記的生物抗體,染色質被切成很小的片斷,并沉淀下來。IP是利用抗原蛋白質和抗體的特異性結合以及細菌蛋白質的“prorein A”特異性地結合到免疫球蛋白的FC片段的現象活用開發出來的方法。目前多用精制的prore
來自北卡羅來納大學教堂山分校,NIH等處的研究人員利用一種新型方法,分析了酵母轉錄因子Rap1在整個基因組中的結合動態,從而可以更好研究這一轉錄因子的功能,這一方法將有助于科學家們實時分析轉錄情況,相關成果公布在Nature雜志上。 對于這一成果,來自法國國家科學研究中心的Fran?ois
隨著技術進步和測序成本的大幅下滑,下一代測序(NGS)如雨后春筍般普及開來,研究人員在開展大規模基因組應用研究中傾向于選擇NGS技術而非微陣列技術,這得益于可接受的測序成本以及越來越簡單的、普及的測序方法。 NGS 系統和配套應用的不斷成熟,諸如文庫制備
1:抗體查詢常用名詞Reactivity (物種與抗體反應):Species with which the antibody reactsHost Species (宿主):Host in which
染色質免疫沉淀技術(Chromatin Immunoprecipitation,簡稱ChIP)是研究活體內蛋白質與DNA相互作用的一種技術。它利用抗原抗體反應的特異性,可以真實地反映體內蛋白因子與基因組DNA結合的狀況。隨著對基因功能研究的不斷深入,這項技術正越來越多的被應用于科研的各個領域
當下生物醫學研究的一個重要特點是技術手段的革新非常快,人類基因組計劃完成后,組學水平的研究使得從整體水平認識生命過程成為可能。美國懷海德生物醫學研究所(Whitehead Institute for Biomedical Research)的Richard A Young博士在這方面——尤其是利
高等植物的所有組織和器官均來源于分生組織,WUCHEL基因是植物分生組織的維持和終止的關鍵基因。WUS的表達調控是一個復雜的網絡,但對其具體的調控機制還很不清楚。越來越多的研究表明,染色質的高級結構對調控基因的表達具有重要作用。 中國科學院遺傳與發育生物學研究所農業資源研究中心劉西崗研究組以擬
實驗方法原理 在保持組蛋白和DNA聯合的同時,通過運用對應于一個特定組蛋白標記的生物抗體,染色質被切成很小的片斷,并沉淀下來。IP是利用抗原蛋白質和抗體的特異性結合以及細菌蛋白質的“
實驗方法原理在保持組蛋白和DNA聯合的同時,通過運用對應于一個特定組蛋白標記的生物抗體,染色質被切成很小的片斷,并沉淀下來。IP是利用抗原蛋白質和抗體的特異性結合以及細菌蛋白質的“prorein A”特異性地結合到免疫球蛋白的FC片段的現象活用開發出來的方法。目前多用精制的prorein A預先結合
染色質免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究體內DNA與蛋白質相互作用的重要工具.它可以靈敏地檢測目標蛋白與特異DNA片段的結合情況,還可以用來研究組蛋白與基因表達的關系.核小體組蛋白可以發生多種翻譯后的共價修飾,如乙酰化、甲基化、磷酸化、泛素化等,這些
在基因調控領域,可以說沒有比表觀遺傳學更熱的話題了。而染色質免疫共沉淀ChIP是表觀遺傳學研究中最常用的方法。 ChIP通過針對染色質相關蛋白(組蛋白、轉錄因子等)的抗體,來鑒定與該蛋白(或蛋白修飾)相連的序列。這種方式能夠幫助人們定位基因組中發生的表觀遺傳學改變。舉例來說,針對H3K4
人類基因組計劃的完成開啟了一個新的紀元——功能基因組時代來臨,與基因信息相比較,人們更關注于基因的功能、調控網絡與信號通路等信息。表觀遺傳學研究與核內蛋白因子的功能分析成為基因表達調控研究的重要組成部分。結合了染色質免疫共沉淀與基因芯片技術的ChIP-chip技術的浮現使得全基因組范圍內DNA與蛋白
最近,美國普渡大學的研究人員開發出一種方法,稱為ZipChip,可大大降低ChIP分析的時間和成本,同時還能提高靈敏度。 染色質免疫沉淀(ChIP)研究,對于染色質相關蛋白和組蛋白修飾在基因組中的定位,提供了深入的見解。然而,標準的ChIP方法耗時、昂貴、費力,由于涉及大量的步驟,易受實驗誤差
該技術能夠快速在目標基因組的染色體中確定特異DNA結合蛋白的準確結合位點,ChIP芯片也可以在一個基因組的任何感興趣的區域內尋找染色體的結構改變。一、ChIP-Chip的用途(1)在基因組范圍內確定基因轉錄因子的DNA結合位點和其他DNA結合蛋白或蛋白復合體的DNA結合位點。(2)染色體活性狀態的定
2019年8月27日,北京大學分子醫學研究所,北京大學-清華大學生命科學聯合中心研究員何愛彬研究組在Molecular Cell雜志在線發表題為“CoBATCH for high-throughput single-cell epigenomic profiling”的文章,報道了一種新的具有普