<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 監測活細胞內脂滴動態過程“緩沖熒光探針”立大功

    近日,大連化物所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊利用“緩沖”策略,發展了細胞內脂滴動態識別熒光探針LD-FG,該探針具有優異的光穩定性,可在空間超分辨成像的基礎上實現高時間分辨率和長時間穩定成像,從而發現了多種新的脂滴動態過程。 脂滴是維持脂質和能量穩態的關鍵細胞器,由中性脂組成的內核及包裹其外的單層磷脂組成。脂滴表面分布著多種蛋白,以調控脂類的儲存、代謝及脂滴運動。越來越多的研究揭示,脂滴具有更多的生理功能,例如抗菌免疫能力、促進藥物積累和激活能力、內核膜代謝能力、與其他細胞器相互作用以交換營養分子、作為癌癥和衰老大腦神經認知功能障礙的標志物等。盡管對脂滴功能的機制缺乏研究,但已證實這些功能與脂滴生命周期的動態密切相關。揭示脂滴的動態有助于研究脂滴的功能機制和發現新的功能。然而,脂滴的數量、位置、大小和組成在細胞之間甚至在同一細胞內可能會有很大差異,脂滴的生命周期、時間和位置上也通常不可預測且難以觀......閱讀全文

    監測活細胞內脂滴動態過程-“緩沖熒光探針”立大功

      近日,大連化物所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊利用“緩沖”策略,發展了細胞內脂滴動態識別熒光探針LD-FG,該探針具有優異的光穩定性,可在空間超分辨成像的基礎上實現高時間分辨率和長時間穩定成像,從而發現了多種新的脂滴動態過程。  脂滴是維持脂質和能量穩態的關鍵細胞器,由中

    超細內窺鏡動態超分辨成像方面研究新進展

      浙江大學及之江實驗室聯合團隊的楊青教授、劉旭教授在光場經復雜動態介質中的快速恢復及超分辨成像方面取得進展。研究結果以“單根多模光纖用于體內光場編碼內窺鏡成像(Single multimode fibre for in vivo light-field-encoded endoscopic ima

    我所發展聚集體調控探針實現多種細胞器動態超分辨成像

      近日,我所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊發展了聚集體調控探針,解決了以往蛋白標簽熒光探針在超分辨成像應用中缺乏對多種細胞器通用性標記的問題。該探針基于遺傳編碼技術,實現了細胞內多種細胞器選擇性熒光識別的廣譜應用性,并且實現了細胞器亞結構的動態超分辨成像,進而揭示了多種未見

    超分辨成像探針和方法開發研究獲進展

      基于單分子定位的超分辨顯微成像技術PALM打破了光學衍射極限,于2014年獲得了諾貝爾化學獎。相對于目前廣泛使用的其它超分辨成像技術而言,該技術具有最高的空間分辨率(~20 nm),因此在生物學中帶來了廣泛的應用。但是由于該技術需要成千上萬張原始圖片來重構一張超分辨圖像,時間分辨率低,在活細胞中

    光致開關熒光探針用于微管蛋白的原位檢測和超分辨成像

    微管蛋白一直被認為是潛在癌癥化療的靶點。許多臨床數據表明:跟蹤微管蛋白的變化將有助于對癌癥治療。傳統的寬場光學顯微鏡的顯微分辨率受到衍射極限的限制,無法獲得細胞內的精細結構信息,大大降低了對微管蛋白類分子的觀察能力。遠場超分辨成像方法是近些年發展起來的利用熒光分子在納米級分辨率下對生物體內的相關物質

    大連化物所實現多種細胞器動態超分辨成像

    近日,我所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊發展了聚集體調控探針,解決了以往蛋白標簽熒光探針在超分辨成像應用中缺乏對多種細胞器通用性標記的問題。該探針基于遺傳編碼技術,實現了細胞內多種細胞器選擇性熒光識別的廣譜應用性,并且實現了細胞器亞結構的動態超分辨成像,進而揭示了多種未

    我所發展細胞膜緩沖熒光探針實現活細胞質膜形態動力學的超分辨熒光成像

    近日,我所生物技術研究部分子探針與熒光成像研究組(1818組)喬慶龍副研究員和徐兆超研究員團隊發展了組裝介導的細胞膜緩沖熒光探針,實現了對細胞質膜的長時間穩定標記和超分辨動態熒光成像,觀察到了質膜絲狀偽足的動態運動和細胞外囊泡的分泌過程,發現了兩種細胞外囊泡的融合模式,為細胞質膜的超分辨動態成像提供

    我國學者在超細內窺鏡動態超分辨成像方面取得進展

      在國家自然科學基金項目(批準號:T2293751、T2293750)資助下,浙江大學及之江實驗室聯合團隊的楊青教授、劉旭教授在光場經復雜動態介質中的快速恢復及超分辨成像方面取得進展。研究結果以“單根多模光纖用于體內光場編碼內窺鏡成像(Single multimode fibre for in v

    新一代單分子定位超分辨成像探針pcStar實現超早期標記

      基于單分子定位的超分辨顯微成像技術PALM打破了光學衍射極限,于2014年獲得了諾貝爾化學獎。相對于目前廣泛使用的其它超分辨成像技術而言,該技術具有最高的空間分辨率(~20 nm),因此在生物學中帶來了廣泛的應用。但是由于該技術需要成千上萬張原始圖片來重構一張超分辨圖像,時間分辨率低,在活細胞中

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    季銨哌嗪如何實現熒光超分辨率成像?

      近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但

    超分辨熒光顯微成像技術的基本原理

    這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米

    科學家發展細胞膜“緩沖熒光探針”

    近日,中國科學院大連化學物理研究所副研究員喬慶龍和研究員徐兆超團隊發展了組裝介導的細胞膜緩沖熒光探針,實現了對細胞質膜的長時間穩定標記和超分辨動態熒光成像,觀察到了質膜絲狀偽足的動態運動和細胞外囊泡的分泌過程,發現了兩種細胞外囊泡的融合模式,為細胞質膜的超分辨動態成像提供了工具。相關成果發表在ACS

    科學家發展細胞膜“緩沖熒光探針”

    近日,中國科學院大連化學物理研究所副研究員喬慶龍和研究員徐兆超團隊發展了組裝介導的細胞膜緩沖熒光探針,實現了對細胞質膜的長時間穩定標記和超分辨動態熒光成像,觀察到了質膜絲狀偽足的動態運動和細胞外囊泡的分泌過程,發現了兩種細胞外囊泡的融合模式,為細胞質膜的超分辨動態成像提供了工具。相關成果發表在ACS

    新一代Nanoimager可輕松實現超分辨熒光成像

    近年來,隨著活細胞體系單分子熒光成像技術的發展,膜蛋白單分子研究,特別是受體動力學的研究,已成為目前單分子研究領域中最活躍的研究方向之一。近幾年發展起來的超分辨成像技術因其能夠突破光學衍射極限,而比傳統光學顯微鏡具有更高的分辨率和更高的定位精度。英國Oxford Nanoimaging公司最新推

    光控熒光染料的超分辨成像研究獲新進展

    ??近日,華東理工大學費林加諾貝爾獎科學家聯合研究中心與中科院上海藥物研究所、國家蛋白質中心、美國得克薩斯大學奧斯丁分校以及英國巴斯大學合作,在酶激活型光控熒光染料的超分辨成像研究中取得重要進展,研究成果以“光致變色熒光探針策略實現生物標志物超分辨成像”為題發表于《美國化學會志》。 酶是人體不可

    硬核!大連化物所指導開發超分辨成像自閃熒光染料

      近日,大連化物所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊與新加坡科技設計大學劉曉剛教授團隊合作,發現羅丹明染料開關環物種穩態下的吉布斯自由能的差值(ΔGC-O)同開環比例具有優異的線性關系(R2=0.965)。此線性關系可以定量地指導設計特定開環比例的羅丹明染料。  單分子定位超分

    山西大學最新文章;新型超分辨率熒光成像

      來自山西大學激光光譜研究所, 量子光學與光量子器件國家重點實驗室的研究人員將熒光探針分子ALEXA647標記在仿生水凝膠的聚合物鏈上, 利用全內反射熒光顯微鏡進行熒光成像, 并采用超分辨率光學波動成像的方法(SOFI)對仿生水凝膠的熒光成像進行超分辨率成像分析。 通過SOFI成像及反卷積處理獲得

    前沿顯微成像技術專題——超分辨顯微成像(2)

    上一期我們為大家介紹了幾種主要的單分子定位超分辨顯微成像技術,還留下了一些問題,比如它的分辨率是由什么決定的?獲得的大量圖像數據如何進行重構?本期我們就來為大家解答這些問題。單分子定位超分辨顯微成像的分辨率單分子定位超分辨顯微成像的分辨率主要由兩個因素決定:定位精度和分子密度。定位精度是目標分子在橫

    前沿顯微成像技術專題——超分辨顯微成像(1)

    從16世紀末開始,科學家們就一直使用光學顯微鏡探索復雜的微觀生物世界。然而,傳統的光學顯微由于光學衍射極限的限制,橫向分辨率止步于 200 nm左右,軸向分辨率止步于500 nm,無法對更小的生物分子和結構進行觀察。突破光學衍射極限,一直是科學家們夢想和追求的目標。雖然隨著掃描電鏡、掃描隧道顯微鏡及

    中國科大實現活細胞的高分辨低功耗快速拉曼成像

    中國科學技術大學工程科學學院Zachary J. Smith教授團隊和華中師范大學化學學院高婷娟教授團隊在拉曼生物成像研究領域取得新進展,提出了一種基于線掃描拉曼成像系統和偶氮增強拉曼探針相結合的快速生物成像方法,實現了對細胞器動態過程的高分辨率、低功耗的影像。相關研究成果于2022年8月15日以“

    高速圖像重建助力實時超分辨成像

    ? ? JSFR-SIM算法和傳統Wiener-SIM算法的重建流程對比示意圖。? ? JSFR-SIM可實時顯示微管和線粒體動態。? ? 高速實時超分辨結構光照明顯微成像光路(a)和快速實時超分辨結構光照明顯微成像系統樣機(b)。圖片來源:論文作者? ? 超分辨熒光顯微成像技術打破

    ACS-Chem.-Biol-│-基于分子邏輯門細胞內脂質單分子成像追蹤

      今天為大家介紹一篇ACS Chem. Biol.的文章 “A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains”,文章的通訊作者是來自瑞士洛桑聯

    開放式動態熒光成像系統概述

      開放式動態熒光成像系統是采用高集成設備有靈活的幾何結構設計,LED板和光源發出飽和閃光能從不同的角度和距離對樣品進行照射,攝像機的位置也是可以進行調節的,提高了測量的精度。標準的成像面積為13×13厘米,可選20×20厘米成像面積,成像大小主要依賴于光源。大成像面積可達到200×100厘米。LE

    提出實現酶高分辨成像新方法

    近日,中科院大連化學物理研究所研究員韓克利團隊基于氨基甲酸酯母核的結構與功能關系,設計并發展了小分子抑制劑型熒光探針(SMI—probe),在重要的藥物代謝酶羧酸酯酶(CEs)的實時熒光高分辨檢測中取得了良好的應用效果。由于抑制劑型探針分子NIC—4的分子結構簡單,體積小,且具有針對CEs的超分辨響

    大化所發展時空超分辨四維熒光成像解析全細胞溶酶體

    近日,我所分子探針與熒光成像研究組(1818組)徐兆超研究員團隊發展了在酸性條件下,可自閃爍的單分子定位超分辨成像熒光探針LysoSR-549,實現了在12nm/20ms時空分辨率下,長達40分鐘的全細胞溶酶體解析。  長時間超分辨熒光成像對于揭示納米尺度的細胞器動力學和功能越來越重要,但由于缺乏高

    小分子熒光抑制劑實現酶高分辨成像的新方法

    大連化物所復雜分子體系反應動力學研究組(1101組)韓克利研究員團隊基于氨基甲酸酯母核的結構與功能關系,設計并發展了小分子抑制劑型熒光探針(SMI-probe),在重要的藥物代謝酶羧酸酯酶(Carboxylesterases,CEs)的實時熒光高分辨檢測中取得了良好的應用效果。由于抑制劑型探針分子N

    利用小分子熒光抑制劑實現酶高分辨成像的新方法

      近日,大連化物所復雜分子體系反應動力學研究組(1101組)韓克利研究員團隊基于氨基甲酸酯母核的結構與功能關系,設計并發展了小分子抑制劑型熒光探針(SMI-probe),在重要的藥物代謝酶羧酸酯酶(Carboxylesterases,CEs)的實時熒光高分辨檢測中取得了良好的應用效果。由于抑制劑型

    哈工大團隊在光學超分辨顯微成像技術領域取得重要突破

      16日,記者從哈爾濱工業大學獲悉,該校儀器學院現代顯微儀器研究所在光學超分辨顯微成像技術領域取得突破性進展。研究團隊在低光毒性條件下,把結構光顯微鏡的分辨率從110納米提高到60納米,實現了長時程、超快速、活細胞超分辨成像。為精準醫療和新藥研發提供了新一代生物醫學超分辨影像儀器,使未來大幅度加速

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频