<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • NDM1超級耐藥細菌正在全球快速傳播

    在1月10日于北京舉辦的第六屆傳染病應對團山論壇上,全球NDM-1超級耐藥細菌發現者、英國卡迪夫大學蒂莫西沃爾什教授報告了上述最新研究發現,并表示愿與中國科學家攜手開展NDM-1超級耐藥細菌控制研究。 NDM-1為沃爾什于2008年首先在印度患者中發現的一種新的超級耐藥基因,編碼一種新的耐藥酶,稱為NDM-1金屬β-內酰胺酶。該超級耐藥基因可在細菌之間傳遞,從而使對抗生素敏感的細菌獲得耐藥性,增加治療的困難。2010年8月11日,沃爾什關于NDM-1研究論文在《柳葉刀傳染病》發表,引起了全世界關注。9天后,世界衛生組織發出警訊,號召世界各國政府加強監測抗生素耐藥性,提倡對抗生素合理使用,嚴格執行預防傳染的管理措施,以抗擊“超級細菌”對人類的侵犯。 同年8月,我國衛生部成立了由中國疾控中心傳染病預防控制所所長徐建國院士牽頭的全國NDM-1耐藥基因檢測協作組,10月在寧夏兩名新生兒和福建一名老年患者身上共發現3株攜帶......閱讀全文

    細菌耐藥機理及其耐藥細菌的檢測與臨床

    全球面臨主要耐藥問題??? MRS(Methicilln-Resistant Stapylococci) 耐甲氧西林葡萄球菌包括MRSA,MRSE等。??? VIA(Vancomycin-Intermediate Staphyococcus Aurus) 萬古霉素中介的金葡菌??? VRE(Vanc

    什么是耐藥細菌

    就是指他的抗藥性很強,例如:平常細菌用1克藥物可殺死,而耐藥細菌卻需要>1克的劑量,甚至幾倍的關系

    什么是耐藥細菌

    什么叫細菌耐藥是細菌與藥物多次接觸后,對藥物的敏感性下降甚至消失,致使藥物對耐藥菌的療效降低或無效.

    細菌耐藥的幾個重要概念及常見細菌的天然耐藥

    交叉耐藥:病原體對某種藥物耐藥后,對于結構近似或作用性質相同的藥物也可顯示耐藥性;即同樣的耐藥機制影響到同一類藥物中的幾種抗生素。例如,慶大霉素耐藥的葡萄球菌對氨基糖苷類所有抗生素耐藥。協同耐藥:同一細菌的不同耐藥機制相互影響到不同類藥物中的幾種抗生素。例如,對β內酰胺類抗生素耐藥的腸桿菌科細菌對氨

    細菌耐藥性與耐藥機制概述

    1.產生一種或多種水解酶、鈍化酶和修飾酶2.抗菌藥物作用靶位改變,包括青霉素結合蛋白位點、DNA解旋酶、DNA拓撲異構酶Ⅳ的改變等3.抗菌藥物滲透障礙,包括細菌生物被膜形成和通道蛋白丟失4.藥物的主動轉運系統亢進上述四種耐藥機制中,第一、二種耐藥機制具有專一性,第三、四種耐藥機制不具有專一性。

    簡述多藥耐藥細菌的耐藥機制

      多藥耐藥性(MDR)系指同時對多種常用抗微生物藥物發生的耐藥性,主要機制是外排膜泵基因突變,其次是外膜滲透性的改變和產生超廣譜酶。最多見的有革蘭陽性菌的多藥耐藥性金黃色葡萄球菌(MDR-MRSA)和耐萬古霉素腸球菌(VRE)及肺炎鏈球菌,革蘭陰性菌如腸桿菌科的肺炎克雷伯菌、大腸埃希菌以及常在重癥

    專家解讀耐藥細菌知識

      1. 什么是耐藥細菌?  抗菌藥物通過殺滅細菌發揮治療感染的作用,細菌作為一類廣泛存在的生物體,也可以通過多種形式獲得對抗菌藥物的抵抗作用,逃避被殺滅的危險,這種抵抗作用被稱為“細菌耐藥”,獲得耐藥能力的細菌就被稱為“耐藥細菌”。  2. 耐藥細菌是從哪里來的?是天然存在的還是物種進化的結果? 

    木乃伊腸道現耐藥細菌

      耐藥基因存在于木乃伊中。圖片來源:Michael Luongo/Bloomberg/Getty  來自印加帝國、有著1000年歷史的木乃伊體內的腸道細菌,對今天的大多數抗生素都具有耐藥性,盡管人類只是在最近100年內才發明了這些藥物。  “起初,我們非常驚訝。”加州州立理工大學的Tasha Sa

    細菌耐藥已成“全球威脅”

      青霉素對許多致病菌不起作用了;結核病常規特效藥對相當數量的病人失效了;青蒿素在非洲也遇到了耐藥……   日前,中科院生物物理所等單位在《自然—基因組學》上發表了揭示結核分枝桿菌耐藥性的文章;與此同時,中科院武漢病毒所在《艾滋病免疫綜合征》上發表了關于HIV基因進化與傳播耐藥研究的重要進展;而中

    細菌耐藥與臨床對策

    近年來由于抗生素的廣泛應用,細菌的耐藥問題越來越嚴重。歷史和現實的教訓告訴我們:任何一種抗生素一旦問世,很快就會產生耐藥株,產生耐藥株的時間周期短則幾年,長則十幾年(表1)。目前,細菌的耐藥問題已成為全球的嚴重問題,為此WHO專門發表了針對細菌耐藥問題的專家建議(WHO/CDS/CSR/DRS/20

    細菌耐藥與臨床對策

    近年來由于抗生素的廣泛應用,細菌的耐藥問題越來越嚴重。歷史和現實的教訓告訴我們:任何一種抗生素一旦問世,很快就會產生耐藥株,產生耐藥株的時間周期短則幾年,長則十幾年(表1)。目前,細菌的耐藥問題已成為全球的嚴重問題,為此WHO專門發表了針對細菌耐藥問題的專家建議(WHO/CDS/CS

    細菌耐藥表型的檢測

    β-內酰胺酶檢測? ? β-內酰胺酶(β-lactamase)是細菌產生的可水解β-內酰胺環抗生素的酶。β-內酰胺酶的產生是細菌對(β-內酰胺類)抗菌藥物耐藥最常見的機制,廣泛地涉及到許多社區獲得性感染和醫院內感染的重要病原菌,在各種耐藥機制中占80%。? ? β-內酰胺酶是由多種酶組成的酶家族,通

    細菌耐藥性變化

    ??? 抗菌藥物的作用靶位隨時間而變化,其結果是耐藥性增加。使用一種抗菌藥物治療某一細菌感染,會對其他細菌、腸道菌群及其他抗菌藥物造成附加損害,影響各種抗菌藥物將來用藥時的臨床療效。??? 當前細菌對抗菌藥物的耐藥趨勢??? 革蘭陰性(G-)菌的耐藥問題必須受到關注。G-菌是當前醫院獲得性感染的

    細菌耐藥與臨床對策

    近年來由于抗生素的廣泛應用,細菌的耐藥問題越來越嚴重。歷史和現實的教訓告訴我們:任何一種抗生素一旦問世,很快就會產生耐藥株,產生耐藥株的時間周期短則幾年,長則十幾年(表1)。目前,細菌的耐藥問題已成為全球的嚴重問題,為此WHO專門發表了針對細菌耐藥問題的專家建議(WHO/CDS/CS

    細菌的主要耐藥機制

    1.產生滅活抗生素的各種酶1.1 β—內酰胺酶(β-lactamase)  β—內酰胺類抗生素都共同具有一個核心β—內酰胺環,其基本作用機制是與細菌的青霉素結合蛋白結合,從而抑制細菌細胞壁的合成。產生β—內酰胺酶是細菌對β-內酰胺類抗菌藥物產生耐藥的主要原因。細菌產生的β-內酰胺酶,可借助其分子中的

    簡述耐藥細菌的危害

      耐藥細菌和敏感細菌在致病性方面差異不大,細菌獲得耐藥性并不改變其致病能力,一般也不會產生新的感染類型,最主要的挑戰在于細菌獲得耐藥后,治療困難,對感染者治療有效率降低、病死率增加、醫療費用會大幅上漲。 [1]   抗生素是人類對抗細菌感染的有效手段。細菌產生耐藥性使原本有效的抗生素的治療效果降

    超級細菌來襲--細菌耐藥已成“全球威脅”

      青霉素對許多致病菌不起作用了;結核病常規特效藥對相當數量的病人失效了;青蒿素在非洲也遇到了耐藥……   日前,中科院生物物理所等單位在《自然—基因組學》上發表了揭示結核分枝桿菌耐藥性的文章;與此同時,中科院武漢病毒所在《艾滋病免疫綜合征》上發表了關于HIV基因進化與傳播耐藥研究的

    無害細菌與耐藥細菌之間的競爭

       科研人員報告說,由腸道原生的一種細菌產生的信息素能夠殺死同種細菌的耐多藥菌株。耐多藥腸球菌是醫院獲得性感染的主要原因,這種細菌在抗生素破壞腸道原生細菌之后在腸道定植。糞腸球菌(E. faecalis)V583耐藥菌株在其基因組中有許多可移動遺傳元件,這可能妨礙它在缺少抗生素的條件下與原生細菌競

    研究揭示細菌粉碎技術對抗超級耐藥細菌

      研究人員利用液態金屬開發了新的殺菌技術,這可能是解決抗生素耐藥性這一致命問題的答案。  這項技術使用磁性液態金屬的納米顆粒來粉碎細菌和細菌生物膜--細菌茁壯成長的保護性"房子"--而不傷害有益細胞。  這項由RMIT大學領導的研究發表在ACS Nano雜志上,為尋找更好的抗菌技術提供了一個突破性

    細菌耐藥問題不容忽視

      “今天不采取行動,明天將無藥可用。” 11月13日,國家衛生計生委醫政醫管局局長張宗久在“2017年抗菌藥物合理使用宣傳周”活動上指出,提高公眾對抗菌藥物的認識,是促進合理用藥、保證用藥安全的重要內容,也是維護人民群眾健康權益、全面建成小康社會的必然要求。  抗菌藥物不合理的使用是導致細菌對抗菌

    我國細菌耐藥情況有所緩解

      國家衛生計生委醫政醫管局局長張宗久日前表示,目前我國抗菌藥物管理機制逐步建立,公眾和醫務人員的合理用藥意識和臨床合理用藥水平逐步提高,細菌耐藥情況有所緩解。但抗菌藥物管理體系發展的不平衡不充分問題仍然較為突出。  張宗久日前在國家衛生計生委、世界衛生組織駐華代表處共同啟動的“2017年抗菌藥物合

    基層醫院如何監測細菌耐藥?

      細菌耐藥評析  細菌的天然耐藥性是穩定的,但獲得性耐藥性會隨抗菌藥物使用壓力的不同而不同。醫院不間斷、廣泛地對細菌進行耐藥監測,可以掌握細菌的耐藥趨勢,為臨床醫生初始用藥、抗菌藥物應用管理政策的制定提供參考。  耐藥監測數據的價值是建立在規范操作基礎上的,不正確的監測結果,不僅不能指導臨床用藥,

    簡述超級細菌的耐藥機制

      1.細菌產生滅活酶或鈍化酶,破壞抗生素的結構,使其失去活性。  2.改變抗生素作用的靶位蛋白結構和數量,使細菌對抗生素不再敏感。  3.細菌細胞膜滲透性改變,使抗生素不能進入菌體內部。  4.細菌主動藥物外排泵作用,將抗生素排出菌體。  5.細菌生物被膜的形成,降低抗生素作用。

    細菌耐藥性是什么

    耐藥性又稱抗藥性,系指微生物、寄生蟲以及腫瘤細胞對于治療藥物的耐受性。耐藥性一旦產生,藥物的作用就明顯下降。自20世紀40年代第一個抗生素——青霉素應用于臨床上以來,目前全世界發現和半合成得到的抗生素有上萬種,獸醫臨床上常用的抗生素有近百種,這些抗生素的長期應用,對于感染性疾病的治療取得了很好的效果

    細菌耐藥與臨床對策(一)

      近年來由于抗生素的廣泛應用,細菌的耐藥問題越來越嚴重。歷史和現實的教訓告訴我們:任何一種抗生素一旦問世,很快就會產生耐藥株,產生耐藥株的時間周期短則幾年,長則十幾年(表1)。目前,細菌的耐藥問題已成為全球的嚴重問題,為此WHO專門發表了針對細菌耐藥問題的專家建議(WHO/CDS/CSR/DRS/

    細菌耐藥與臨床對策(二)

    1.2.2 DNA拓撲異構酶的改變引起喹諾酮類抗生素耐藥  喹諾酮類藥物的作用機制主要是通過抑制DNA拓撲異構酶而抑制DNA的合成,從而發揮抑菌和殺菌作用。細菌DNA拓撲異構酶有I、Ⅱ、Ⅲ、Ⅳ,喹諾酮類藥物的主要作用靶位是拓撲異構酶Ⅱ和拓撲異構酶Ⅳ。拓撲異構酶Ⅱ又稱DNA促旋酶,參與DNA超螺旋的形

    細菌耐藥性的分類

      耐藥性可分為固有耐藥(intrinsic resistance)和獲得性耐藥(acquired resistance)。固有耐藥性又稱天然耐藥性,是由細菌染色體基因決定、代代相傳,不會改變的,如鏈球菌對氨基糖苷類抗生素天然耐藥;腸道G-桿菌對青霉素天然耐藥;銅綠假單胞菌對多數抗生素均不敏感。獲得

    多藥耐藥細菌的預防

      1.嚴格管理多藥耐藥細菌感染患者(及帶菌者),辟專室、專區進行隔離。  2.由訓練有素的專職醫護人員對多藥耐藥細菌感染者進行醫療護理,發現為帶菌者時暫調離工作崗位。  3.檢查每一位患者前必須用消毒液洗凈雙手,并按需要更換口罩、白大衣或手套。  4.每日嚴格進行病室的環境消毒。  5.高度重視抗

    細菌耐藥性檢測方法

    1、細菌耐藥表型檢測:判斷細菌對抗菌藥物的耐藥性可根據NCCLS標準,通過測量紙片擴散法、肉湯稀釋法和E試驗的抑菌圈直徑、MIC值和IC值獲得。也可通過以下方法進行檢測:(1)耐藥篩選試驗:以單一藥物的單一濃度檢測細菌的耐藥性被稱為耐藥篩選試驗,臨床上常用于篩選耐甲氧西林葡萄球菌、萬古霉素中介的葡萄

    追擊“超級細菌”:“細菌耐藥監測網”需完善

      尚不確定三病例因超級耐藥基因細菌引發  “耐藥基因就像細菌的一件衣服,所以不是細菌耐藥,而是基因耐藥。”軍事醫學科學院疾病預防控制所的所長黃留玉解釋說,“超級細菌”這種說法是不規范的,其規范稱呼應該是NDM-1耐藥基因細菌。  中國疾病預防控制中心傳染病預防控制所所長徐建國教授介紹,根據中國疾病

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频