近日,麻省理工白頭研究所和哈佛丹娜法伯癌癥研究所以及冷泉港實驗室這三家知名的研究機構的科學家驚訝地發現,一組稱作“超級增強子”( super-enhancer)的強有力基因調控子,它們控制了細胞的狀態和特性。相關兩個研究論文刊登在了近期出版的《細胞》(Cell)雜志上。 研究發現,健康細胞利用這些超級增強子來控制負責細胞功能和發育轉換(例如從胚胎干細胞轉換為神經細胞)的基因,而癌細胞能夠裝配自身的超級增強子,過度表達癌基因,導致侵襲性腫瘤。 研究人員一直驚嘆細胞控制的復雜性,在構成人體的各種各樣細胞中,數百萬的增強子控制著數以萬計的基因。因此,發現只有數百的超級增強子控制了賦予每個細胞特性和功能的大多數關鍵基因,并且這些特異的控制在癌癥和其他疾病中遭到了劫持,是令人感到驚喜的。 研究人員在正常細胞中確立了一個基因調控模型,這一模型似乎遠沒有以前所認為的那么復雜,且更易解析。到目前為止,包括近期記述的 ......閱讀全文
核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的
基因敲除可以說是基因組 學、細胞分離培養以及轉基因技術的組合。那么基因敲除的原理是什么呢? 基因敲除的方法有哪些呢?在此,做個小結,以供大家學習。一.概述:基因敲除是自80年代末以來發展起來的一種新型分子 生物學技術,是通過一定的途徑使機體特定的基因失活或缺失的技術。通常意義上的基因敲除主要是應用D
基因編輯技術是對某一核苷酸序列中的特定基因位點進行人為改變,插入、刪除、替換或修飾基因組中的特定目的基因使其表達性狀改變的一種新興分子生物技術。CRISPR -Cas9作為一種新興的基因編輯技術,通過定向敲除腫瘤免疫檢查點分子或者通過快速簡便的基因編輯,而被廣泛應用于腫瘤治療領域,其顯著降低了腫
IS PCR的技術特點 (1)既具有PCR的特異性與高靈敏性,又具有原位雜交的定位準確性;(2)測到低于2個拷貝量的細胞內特定DNA序列,甚至可檢測出單一細胞中的僅含一個拷貝的原病毒DNA;(3)有助于細胞內特定核酸序列定位與其形態學變化的結合分析;(4)可用于正常或惡性細胞,感染或非感染細胞的鑒定
外源基因在原核細胞中表達是基因工程操作中最初取得成功的途徑。1 原核生物基因表達的特點同所有的生命過程一樣,外源基因在原核細胞中的表達包括兩個主要過程:即 DNA轉錄成mRNA和 mRNA翻譯成蛋白質。與真核細胞相比,原核細胞的表達有以下特點:①原核生物只有一種RNA 聚合酶(真核細胞有三種)識別原
多囊卵巢綜合征(Polycystic ovary syndrome, PCOS)是一種復雜的、病因不明的疾病,最新研究結果表明,胰島素耐受(insulin resistance , IR)在PCOS的發生過程中起了重要的作用。本研究主要致力于探究IR在PCOS發生過程中的分子機制,運用基因組DN
多囊卵巢綜合征(Polycystic ovary syndrome, PCOS)是一種復雜的、病因不明的疾病,最新研究結果表明,胰島素耐受(insulin resistance , IR)在PCOS的發生過程中起了重要的作用。本研究主要致力于探究IR在PCOS發生過程中的分子機制,運用基
原核表達系統是常被用來研究基因功能的成熟系統,由于原核表達系統具有包涵體蛋白不易純化、蛋白修飾不完整等缺陷,人們也開始利用真核細胞表達系統來研究基因。自上世紀70年代基因工程 技術誕生以來,基因表達技術已滲透到生命科學研究的各個領域。并隨著人類基因組計劃實施的進行,在技術方法上得到了很大發展,時至今
在雙鏈 DNA 分子中,只有一條鏈轉錄成 mRNA,這條鏈稱為有意義鏈(sense strand),該基因的另一條鏈則稱反意義鏈(antisense strand)。在含有許多基因的 DNA 雙鏈中,每個基因的有意義鏈并不是在同一條 DNA 鏈上。也就是說,一條鏈上既具有某些基因的有意義鏈,
多囊卵巢綜合征(Polycystic ovary syndrome, PCOS)是一種復雜的、病因不明的疾病,最新研究結果表明,胰島素耐受(insulin resistance , IR)在PCOS的發生過程中起了重要的作用。本研究主要致力于探究IR在PCOS發生過程中的分子機制,運用基因組
2.癌基因的激活癌基因可以通過多種方式被激活而過度表達。 (1)突變激活:體細胞內的原癌基因可以因點突變而成為癌基因,產生異常的基因產物;也可由于點突變使基因擺脫正常的調控而過度表達。因此,突變激活又稱為激活的質變模式(qualitative model)。例如在
專題一:RNA干擾技術(RNAi)1995年,康奈爾大學的Su Guo博士用反義RNA阻斷線蟲基因表達的試驗中發現,反義和正義RNA都阻斷了基因的表達,他們對這個結果百思不得其解。直到1998年, Andrew Fire的研究證明,在正義RNA也阻斷了基因表達的試驗中,真正起作用的是雙鏈RNA。這些
“黑匣子”(Black Box),學名是飛行數據記錄儀,是飛機專用的電子記錄設備之一,可以記錄飛機飛行期間的詳細信息資料。 回首2014年,找不到“黑匣子”的馬航(MAS)在12月15日告別吉隆坡股票交易所,結束為期29年的上市生涯。這一天,恰好也是韓國科學家黃禹錫的生日。 看到上述開頭,你
來自國家自然科學基金委員會的消息,8月18日國家自然科學基金委員會公布了2015年國家自然科學基金申請項目評審結果,其中面上項目16709項、重點項目624項、創新研究群體項目38項、優秀青年科學基金項目400項、青年科學基金項目16155項、地區科學基金項目2829項、海外及港澳學者合作研究基
國家自然科學基金一審同行評議要點,第一條第一句,“著重評議申請項目的創新性,明確指出項目的研究價值和創新之處。”每年非中標項目,創新性的問題是最多的。 百度百科上的描述,“創新是以新思維、新發明和新描述為特征的一種概念化過程。其起源于拉丁語,有三層含義:第一,更新;第二,創造新的東西;第三
來自國家自然科學基金委員會的消息,國家自然科學基金委員會公布了2012年度面上項目、重點項目、重大國際(地區)合作研究項目、青年科學基金項目、地區科學基金項目、海外及港澳學者合作研究基金項目、科學儀器基礎研究專款項目等方面的評審結果。有關評審結果將通知相關依托單位,其科研管理人員可登錄
1. 真核生物表達的優越性和必要性① 真核生物具有轉錄后加工系統,可識別并刪除基因中的內含子,剪切加工為成熟mRNA.②具備完善的翻譯后加工系統,可進行糖基化、乙酰化等修飾,使蛋白形成正確的天然構型,因而真核生物表達系統產生的蛋白更接近天然狀態,有利于其功能、生物活性的研究。③某些真核細胞可將基因表
人類胚胎發育是一個極其復雜的過程,從一個單細胞的受精卵開始,首先經過著床前胚胎發育產生胚內和胚外組織,再到著床后原腸胚階段三個胚層的特化,進而到器官發生、分化、成熟,及至新生命的誕生。整個兩百八十天的胚胎發育過程從一個單細胞受精卵增殖發育形成含有上萬億個細胞的嬰兒,期間基因表達受到嚴密、精準的調
一、體細胞突變 腫瘤可以看作是在個體遺傳素質的基礎上,尤其是在個體對腫瘤的遺傳易感性基礎上,致癌因子引起細胞遺傳物質結構或功能異常的結果。這種異常大多數不是由生殖細胞遺傳得來,而是在體細胞中新發生的基因突變所致。發生突變的癌前細胞在一些促癌因素的作用下發展為腫瘤。因此,有
人類胚胎發育從受精卵開始,經過著床前胚胎發育(胚內和胚外組織的產生),原腸胚產生(三胚層的特化)和器官發生等階段,最終新生兒出生。人類胚胎發育從單個細胞到上萬億個細胞,歷時二百八十天,整個過程的基因表達受到多種因素的精細調控,其中很多機制尚未明確。 為了解析人類胚胎發育各個階段的基因表達調控網
一直以來,科學家們在研究某個基因的功能時無非就只有兩種方法,要么就是敲除這個基因,或者下調其表達量,要么就是提高其表達量。在20世紀90年代發現的RNA干擾技術又給科學家們提供了一條新的研究基因功能的途徑,RNA干擾技術可以通過小RNA分子(small RNA molecule)與目標m
用基因工程方法將bcl-2基因這種細胞凋亡抑制基因導入細胞,成為眾多研究者的選擇。bcl-2基因的過量表達能抑制Gln或氧缺乏引起的細胞凋亡,減少細胞特定營養成分的消耗,提高細胞密度和目的蛋白產量,這對于細胞大規模培養具有重大意義。對細胞的這種保護作用依賴于bcl-2等抑制基因的高水平表達。因此,需
生殖細胞是個體發育過程中一類特殊的細胞,是種族繁衍的載體。近年來,喬杰課題組及合作者圍繞生殖細胞的發生、發育與成熟進行了系統的研究,揭示了人類胎兒生殖細胞發生、育齡男性精子成熟等多個關鍵發育階段的基因組特征、DNA甲基化重編程及其對基因表達的調控關系(Cell 2013,2015; Cell S
在死亡之前,已變成皮膚細胞的細胞仍然是皮膚細胞。在過去十年,明顯的是,細胞身份并不是一成不變的,它能夠通過激活特異性的遺傳程序而得以重寫。如今,再生醫學領域面臨著一個問題:這種重寫應當采取常規方法,即成熟細胞首先轉化回干細胞,或者如果可行的話,采取一種更加直接的方法? 術語“終末分化(term
第七節 實驗動物的處死當實驗中途停止或結束時,實驗者應站在實驗動物的立場上以人道的原則去處置動物,原則上不給實驗動物任何恐怖和痛苦,也就是要施行安樂死。安樂死是指實驗動物在沒有痛苦感覺的情況下死去。實驗動物安樂死方法的選擇取決于動物的種類與研究的課題。一、蛙 類常用金屬探針插入枕骨大孔,破壞腦脊髓的
近日,國際學術期刊《美國科學院院刊》(PNAS)在線發表了由中國科學院數學與系統科學研究院和美國斯坦福大學、清華大學等單位的科研人員合作的基因調控網絡建模的研究成果,提出了利用匹配的基因表達和染色質可及性數據刻畫順式調控元件和反式調控元件相互作用的數學模型,將基因調控網絡的建模研究從編碼基因推進
近日,國際學術期刊《美國科學院院刊》(PNAS)在線發表了由中國科學院數學與系統科學研究院和美國斯坦福大學、清華大學等單位的科研人員合作的基因調控網絡建模的研究成果,提出了利用匹配的基因表達和染色質可及性數據刻畫順式調控元件和反式調控元件相互作用的數學模型,將基因調控網絡的建模研究從編碼基因推進
細胞凋亡又稱程序性細胞死亡(PCD),是細胞衰老自然死亡的主要方式之一,在機體中承擔著重要的調控作用。它不僅在維持細胞群體數量的穩定、胚胎發育和免疫系統的克隆選擇方面,而且在腫瘤發生、發展、抗腫瘤藥物的治療等方面具有十分重要的作用。細胞凋亡是由基因編程控制的細胞主動參與的自殺過程沒事一種生理性調節機
(3)原核生物的基因組基本上是單倍體,而真核基因組是二倍體。(4)如前所述,細菌多數基因按功能相關成串排列,組成操縱元的基因表達調控的單元,共同開啟或關閉,轉錄出多順反子(polycistron)的mRNA;真核生物則是一個結構基因轉錄生成一條mRNA,即mRNA是單順反子(monocistron)
最近,研究人員通過對各種綠藻進行基因組測序,已經接近于解開了“引起多細胞生物的遺傳變化”的謎團。 從單細胞生物到多細胞生物的過渡,是地球上生命進化的關鍵進步;在不同的系統發育譜系中,這種改變已經獨立地發生了多次。了解“有多少基因以及有哪些基因,對單細胞祖先成為多細胞來說是必要的”,是一個有趣的