來自中國科技大學,英國鄧迪大學的研究人員圍繞一種關鍵小蛋白:Stc 1的結構和功能展開了研究,從中揭示出了裂殖酵母中RNAi與染色質修飾之間的分子作用機制,指出了非編碼RNA的又一重要作用。相關成果公布在《美國國家科學院院刊》(PNAS)雜志上。 文章的通訊作者是中國科技大學生命科學學院施蘊渝院士,以及鄧迪大學Elizabeth H. Bayne,其中施蘊渝院士研究組主要研究興趣包括用多維核磁共振波譜及計算生物學研究與重大疾病或重要生理功能相關的蛋白質結構,動力學與功能關系,以及蛋白質與蛋白質,蛋白質與核酸,蛋白質與小分子配基的相互作用等。 ENCODE項目的研究數據表明,四分之三的人類基因組是能轉錄的,但其中只有最多不過1.5%的能編碼出蛋白,其余的非編碼RNAs(ncRNA)——“垃圾”RNA,包括5'和3'非翻譯區mRNAs,都發揮著表觀遺傳,轉錄和轉錄后基因網絡調控等方面的作用。 研究表明,......閱讀全文
染色質修飾包括組蛋白轉錄后修飾,組蛋白多樣性。連同DNA一起調控表觀遺傳表型。雖然染色質修飾在多種生理學過程和人類疾病中都有重要的意義,但是由于此前存在的技術檢測通道有限,無法同時檢測各種免疫細胞亞群特異性marker和各種染色質修飾。因此在人類免疫細胞中進行染色質研究具有挑戰性。近期出現的一個技術
為了將兩米長的DNA分子裝入到只有幾千分之一毫米大小的細胞核中,DNA長片段必須強力地緊密壓縮。表觀遺傳學標記維持著這些稱作異染色體的部分。來自馬克思普朗克免疫生物學和表觀遺傳學研究所的科學家們現在進一步發現了異染色質形成必需的兩種機制。相關論文發布在近期的《細胞》(Cell)雜志上。 由
21世紀,表觀遺傳學的研究得到了快速發展,同時其產生了讓研究人員感興趣和憧憬的東西,當然了,這其中也存在一些大肆宣傳的成分,本文中,我們回顧了表觀遺傳學在過去幾十年里是如何演變的,同時分析了近年來改變科學家們對生物學理解的一些研究進展;我們討論了表觀遺傳學和DNA序列改變之間的相互作用,以及表觀
表觀遺傳學指基因序列不變化的前提下,基因表達發生了可遺傳的變化,包括DNA甲基化、染色質改型、基因沉默、RNA編輯、組蛋白修飾(甲基化、乙酰化、磷酸化等)等。其中,染色質改型調控基因表達的過程,涉及多種導致DNA和組蛋白組成變化、染色質構象變化的蛋白質。 眾多研究已經證明,染色體畸變和染色質異
隨著人類基因組測序工作的基本完成,功能基因組學逐漸成為研究的熱點。而基因表達的調控又是功能基因組學的一個重要研究領域,要想提供蛋白因子直接調控的證據,需要直接檢測蛋白質-DNA的相互作用,而染色質免疫沉淀技術(Chromatin Immunoprecipitation,ChIP)就是一種研
研究人員發現一類植物特有的新型組蛋白甲基化閱讀器ADCP1,并確定其為動物HP1(Heterochromatin Protein 1,異染色質蛋白1)功能同源蛋白,揭示出其在植物異染色質維持和轉座子元件沉默中的作用,彰顯了不同生命界中表觀機制的復雜性和保守性。 2018年11月13日,清華-北
DNA如何包裝成染色體,是科學家們一直努力破解的重要科學問題。近30年來,由于缺乏系統、合適的研究手段,作為染色質包裝過程中承上啟下的關鍵部分,30納米染色質高級結構研究一直是現代分子生物學領域面臨的最大挑戰之一。李國紅(中)在工作 科學家已經發現,染色質包裝分4步完成,對應了染色質的四級結構
近日,兩篇刊登在國際雜志Molecular Cell上的研究報告中,來自加州理工學院等機構的科學家們通過研究揭示了基因組自我調節的分子機制。生物體的基因組中包含了每個細胞和組織發育和發揮正常功能所需要的所有信息,當被寫入DNA后,每個基因都會進行信息編碼,包括幫助確定組織形狀的結構蛋白、催化生命
染色質由真核基因組包裝而成,它參與了轉錄、復制、重組、修復等許多以DNA一蛋白質相互作用為基礎的生化過程。研究者感興趣的是這些過程涉及到哪些特異的基因或DNA序列,有哪些蛋白質參與。盡管有許多人對染色質進行分類,就像Holde將其分為轉錄活性或非活性位點,但染色質構本身是動態的,并且DNA與非組蛋白
染色質結構通過促進或抑制該結構的轉錄可以控制基因組的功能和細胞身份認定。這些染色質結構中存在特定的組蛋白翻譯后修飾(posttranslational modifications,PTMs),它們與特定轉錄狀態相關,并可促進抑制性染色體結構的形成,影響基因的表達【1】。 為了在細胞分裂時依然保
核小體是真核生物染色質的基本單位,由DNA纏繞組蛋白八聚體構成。組蛋白翻譯后共價修飾是表觀遺傳調控的重要方式之一,通過影響染色質的狀態而調控基因表達等過程。組蛋白H3第27位賴氨酸的三甲基化修飾(H3K27me3)通過維持基因的沉默狀態,在動植物細胞命運決定以及生長發育中發揮重要的調控作用。基因
生命科學的一個基本問題是在個體發育中,單個細胞如何分化成各種類型的組織細胞。這個過程高度依賴于基因表達的精確時空調控,而這種細胞特異基因表達與染色質的調控密切相關。比如,不同的順式調控原件增強子能夠在不同細胞中選擇性地激活目標基因。每個基因經常由分布在千堿基(kb)甚至兆堿基(Mb)以外的多個增
3月23日,中國科學院生物物理研究所生物大分子國家重點實驗室李國紅課題組在Nature Cell Biology上發表了題為RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propaga
5月3日,清華大學生命學院頡偉研究組、醫學院那潔研究組與鄭州大學第一附屬醫院生殖醫學中心孫瑩璞研究組緊密合作,在《自然》期刊發表題為《人類早期胚胎染色質研究揭示基因組激活前后表觀遺傳轉換規律》(Chromatin analysis in human early development revea
摘要:1月17日,同濟大學生命科學與技術學院、附屬東方醫院高亞威教授聯合美國芝加哥大學教授何川、中科院北京基因組研究所研究員韓大力合作完成的研究成果“N6-methyladenosine of chromosome-associated regulatory RNA regulates chro
1. 真核生物表達的優越性和必要性① 真核生物具有轉錄后加工系統,可識別并刪除基因中的內含子,剪切加工為成熟mRNA.②具備完善的翻譯后加工系統,可進行糖基化、乙酰化等修飾,使蛋白形成正確的天然構型,因而真核生物表達系統產生的蛋白更接近天然狀態,有利于其功能、生物活性的研究。③某些真核細胞可將基因表
(3)原核生物的基因組基本上是單倍體,而真核基因組是二倍體。(4)如前所述,細菌多數基因按功能相關成串排列,組成操縱元的基因表達調控的單元,共同開啟或關閉,轉錄出多順反子(polycistron)的mRNA;真核生物則是一個結構基因轉錄生成一條mRNA,即mRNA是單順反子(monocistron)
中國科學院生物物理研究所焦仁杰研究員課題組最新研究發現,染色質裝配因子 1(chromatin assembly factor 1, CAF-1)對異染色質區域的基因表達發揮十分重要的表觀遺傳調控作用。他們的成果已被細胞生物學研究領域的專業期刊J. Cell Sci.接受發表。
據最新發表于CA Cancer J Clin雜志的全球癌癥數據統計,全球每年乳腺癌新發病例約210萬,死亡病例62.7萬,在所有導致死亡的癌癥類型中排名第二【1】。乳腺癌細胞可以依據其表達雌激素受體(Estrogen receptor, ER)、孕激素受體 (Progesterone recep
Image credit: Zhi Ye 由抑制性組蛋白修飾H3K9me3所標記的異染色質在細胞分化過程中變得高度凝聚,其區域顯著擴展 【1,2】,形成防止已分化細胞命運逆轉的重要壁壘。與此相對應,H3K9me3+異染色質區域的解壓縮可以極大提高細胞重編程的效率【3, 4】。過去的研究表明,H3K
在真核生物細胞內,DNA纏繞著組蛋白八聚體形成染色質的基本組成單位,核小體。染色質在包裝、保護遺傳物質方面發揮著關鍵作用。 染色質形成同時對細胞內的一些生理過程,如DNA復制、轉錄、修復等產生了巨大的障礙。為此SWI/SNF家族染色質重塑復合物通過利用ATP水解的能量調控染色質的結構,廣泛參與
山東農業大學李平華課題組和香港中文大學鐘思林課題組的合作研究團隊,日前在重要作物大基因組染色質研究領域獲得重大突破。近日,國際學術期刊《分子植物》發表了該項研究成果論文。 該團隊利用最新的高通量染色體構象捕獲技術,通過對玉米、番茄、高粱、水稻和小米等主要作物的染色質空間結構進行研究,成功揭示了
人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DN
人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DN
人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DN
當下生物醫學研究的一個重要特點是技術手段的革新非常快,人類基因組計劃完成后,組學水平的研究使得從整體水平認識生命過程成為可能。美國懷海德生物醫學研究所(Whitehead Institute for Biomedical Research)的Richard A Young博士在這方面——尤其是利
ChIP技術的原理 在生理狀態下把細胞內的DNA與蛋白質交聯在一起,通過超聲或酶處理將染色質切為小片段后,利用抗原抗體的特異性識別反應,將與目的蛋白相結合的DNA片段沉淀下來,以富集存在組蛋白修飾或者轉錄調控的DNA片段,再通過多種下游檢測技術(定量PCR、基因芯片、測序等)來檢測此富集片
7月30日,《美國國家科學院院刊》(PNAS)雜志在線發表了中國科學院分子植物科學卓越創新中心上海植物逆境生物學研究中心朱健康研究組題為Histone Acetylation Recruits the SWR1 Complex to Regulate Active DNA Demethylati
近期《美國國家科學院院刊》(PNAS)雜志在線發表了中國科學院分子植物科學卓越創新中心上海植物逆境生物學研究中心朱健康研究組題為Histone Acetylation Recruits the SWR1 Complex to Regulate Active DNA Demethylation i
本文中,小編盤點了多篇研究報告,共同解析科學家們在組蛋白研究上取得的新成就,與大家一起學習!圖片來源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3 【1】Nature:揭示組蛋白標記H3K36me2招募DNMT3A并影響基因間DN