研究揭示突觸前膽堿轉運蛋白CHT1轉運調控機制
4月8日,中國科學院生物物理研究所趙巖研究組在國際學術期刊《自然-結構與分子生物學》上發表研究論文。該研究利用單顆粒冷凍電鏡技術,首次解析了高親和力膽堿轉運蛋白CHT1(high-affinity choline transporter 1)的轉運調控機制。CHT1介導的膽堿回收是乙酰膽堿合成的限速步驟,它的表達異常和功能障礙會誘發多種疾病,例如遺傳性運動神經元病、肌無力綜合征、動脈粥樣硬化、抑郁癥和阿爾茲海默病等。然而,人們對CHT1識別膽堿的關鍵位點尚不明確,其構象變化的結構基礎以及小分子HC-3對轉運活性的抑制機制也有待闡明。在結合了HC-3的CHT1外向結構中,HC-3呈現出棒狀形態,并從外側插入底物結合口袋,將蛋白鎖定在外向開口狀態。在內向膽堿結合狀態下,CHT1的胞內口袋向內開放,膽堿仍然被色氨酸三聯體穩定。在內向無底物結合狀態下,色氨酸三聯體口袋發生構象變化,膽堿向胞內溶劑側暴露,進而導致膽堿從底物結合口袋中釋放。......閱讀全文
關于突觸前膜的突觸傳遞的作用介紹
突觸傳遞是神經元之間或神經元與效應器之間的信息傳遞。突觸是神經元之間或神經元與其他細胞相接觸的部位,是一種進行傳遞信息的特殊連接裝置。突觸由突觸前膜、突觸間隙與突觸后膜三部分組成。軸突末梢形成許多球形的突觸小體,突觸前膜是突觸小體的膜,突觸后膜是突觸后神經元與突觸前膜相對應部分的膜。兩膜之間存在
陳宜張著作《突觸》:研究“突觸”的一塊基石
讀陳宜張院士沉甸甸的學術著作《突觸》,我們深切感受到的是一位老科學家在科學征程上執著追求的赤誠。陳宜張已87歲,成就卓著,仍沒有懈怠,辛勤耕耘,在獨立出版54萬字的《神經科學的歷史發展與思考》五年之后,又以一人之力推出大作《突觸》。其為神經科學傳道授業的熱忱,不能不讓我們這些學界晚輩為之汗顏。
瘦素可促進突觸形成或突觸發生
瘦素這種激素以調節食欲而聞名,如今證據表面,它似乎會影響神經元的發育——這一發現可能有助于解釋諸如自閉癥等與功能失調的突觸形成有關的疾病。 瘦素是一種由成人體內脂肪細胞釋放的激素,研究人員主要關注它是如何控制食欲的。在5月18日發表在《科學信號》(Science Signaling)雜志上的一
什么是免疫突觸?
T細胞突觸即免疫突觸。成熟T細胞在與APC識別結合的過程中,多種跨膜分子聚集在富含神經鞘磷脂和膽固醇的“筏”狀結構上并且互相靠攏成簇,形成細胞間互相結合的部位,其中心區為TCR和抗原肽-MHC分子,以及T細胞膜輔助分子和相應配體,周圍環形分布著大量的其它細胞粘附分子。
最新研究發現突觸脈沖的強度與突觸大小直接相關
神經細胞通過突觸彼此交流。近日,發表在《Nature》上的一項研究中,來自蘇黎世大學神經信息學研究所和蘇黎世聯邦理工學院的Kevan Martin實驗室的研究團隊發現,這些聯系似乎比以前認為的要強大得多。突觸越大,傳遞的信號就越強。這些發現將有助于更好地了解大腦功能以及神經系統疾病是如何產生的。
突觸的含義以及橫過突觸空隙傳遞神經訊號的步驟
突觸(synapse)是神經纖維間的連繫。所有的神經纖維都是以軸突末稍(dendrite)連到其它神經纖維的樹突末稍(axonbrush)。而且在軸突末稍和樹突末稍間留有一個空隙,稱為突觸空隙(synspticcleft)。如下圖所示。??橫過突觸空隙傳遞神經訊號的步驟:?(1)神經訊號到達軸突末稍
人工突觸可自主學習
來自法國國家科學研究中心及其他研究組織的研究人員創造了一種能夠自主學習的人工突觸。他們還對該設備進行建模,這對于開發更復雜的腦回路至關重要。該研究4月3日在《自然—通訊》雜志上發表。 生物模擬學的目標之一是從大腦的功能中獲得靈感,以便設計越來越多的智能機器。這一原則已經以完成特定任務的算法形式
突觸信號傳送的定義
中文名稱突觸信號傳送英文名稱synaptic signaling定 義神經系統中穿過化學突觸進行細胞間的信號傳遞方式。應用學科細胞生物學(一級學科),細胞通信與信號轉導(二級學科)
突觸信號傳送的概念
中文名稱突觸信號傳送英文名稱synaptic signaling定 義神經系統中穿過化學突觸進行細胞間的信號傳遞方式。應用學科細胞生物學(一級學科),細胞通信與信號轉導(二級學科)
突觸信號傳送的定義
中文名稱突觸信號傳送英文名稱synaptic signaling定 義神經系統中穿過化學突觸進行細胞間的信號傳遞方式。應用學科細胞生物學(一級學科),細胞通信與信號轉導(二級學科)
什么是T細胞突觸-?
T細胞突觸是APC(抗原提呈細胞)和T細胞相互作用的過程中,在細胞與細胞接觸部位形成了一個特殊的結構,稱為T細胞突觸(T cell synapse),又稱為免疫突觸(immunological synapse)。
研究揭示突觸可塑性長時程增強的突觸后分子機制
中樞神經系統是脊椎動物調控最復雜、最嚴謹的器官之一,控制著感覺感知、情緒調節和機體維持等基本神經活動,以及思維、認知和意識等高級神經活動。大腦最重要的特征之一就是能夠存儲大量的信息,即學習和記憶能力,在阿茲海默病等神經精神疾病的患者中,學習和記憶能力的異常是重要的臨床表征之一。神經元之間相互形成
睡眠剝奪改變大腦突觸
此前已有研究發現,睡眠不足會對大腦造成嚴重破壞,導致學習能力下降、記憶混亂等。但其背后的機制仍存在許多不確定性。現在,一項針對小鼠的研究表明,上述睡眠不足導致的結果,部分可能源于腦細胞相互連接方式的改變。在近日發表于《當代生物學》的一項研究中,研究人員發現,僅幾個小時的睡眠剝奪就會減少與學習和記憶相
睡眠剝奪改變大腦突觸
此前已有研究發現,睡眠不足會對大腦造成嚴重破壞,導致學習能力下降、記憶混亂等。但其背后的機制仍存在許多不確定性。現在,一項針對小鼠的研究表明,上述睡眠不足導致的結果,部分可能源于腦細胞相互連接方式的改變。在近日發表于《當代生物學》的一項研究中,研究人員發現,僅幾個小時的睡眠剝奪就會減少與學習和記憶相
簡述突觸核蛋白錯誤折疊
研究發現α-突觸核蛋白正常、錯誤折疊及其寡聚化之間存在動態平衡,當這種平衡被打破后原纖維迅速聚集成大分子、不溶性的細纖維;α-突觸核蛋白在不同的影響因素下會表現出許多種形態,包括舒展態、溶解前球型態、α-螺旋態(膜結合),β-片層態、二聚體態、寡聚體態、以及不可溶的無定型態和纖維態;α-突觸核蛋
-Nature:星形細胞參與突觸消除
突觸消除是腦發育的一個重要方面,在其中突觸接觸的數量以依賴于活動的方式減少。膠質細胞(在腦中發揮各種作用的非神經細胞)最近被發現在突觸重塑中起一定作用,其中能吞噬細胞的小神經膠質負責一定比例的連接優化,而關于這一現象背后機制的其他情況則基本上不清楚。 在這篇文章中,Won-Suk Chun
()黃皮酰胺酰胺有利于海馬回CA1區突觸的突觸傳遞
中國醫學科學院北京協和醫學院陳乃宏研究員團隊近日在European Journal of ?Pharmacology發表文章,主要探討了(-)黃皮酰胺酰胺對海馬回CA1區突觸(hippocampal Schaffer ?collateral-CA1 synapses)信號傳遞的作用。 黃皮酰胺是從民
美國開發出“大腦芯片”人造突觸
人腦約有一千億個神經元,神經元通過100萬億突觸(即神經元之間的空間)傳遞指令,使大腦能夠以閃電般的速度識別圖案,完成記憶并執行其它學習任務。新興領域“神經形態計算”的研究人員試圖設計出像人腦一樣工作的計算機芯片,通過模擬信號工作,類似于神經元。通過這種方式,小型神經形態芯片可以像大腦一樣有效地
美國開發出“大腦芯片”人造突觸
人腦約有一千億個神經元,神經元通過100萬億突觸(即神經元之間的空間)傳遞指令,使大腦能夠以閃電般的速度識別圖案,完成記憶并執行其它學習任務。新興領域“神經形態計算”的研究人員試圖設計出像人腦一樣工作的計算機芯片,通過模擬信號工作,類似于神經元。通過這種方式,小型神經形態芯片可以像大腦一樣有效地
超導突觸處理信息能力超人腦
通過高速電子探針連接的人造突觸。 圖片來源:《自然》雜志官網 據英國《自然》雜志網站近日報道,美國科學家研制出一款模擬人腦神經中樞處理過程的超導突觸,其信息處理速度比人腦更快,而且更高效。研究人員表示,盡管該人造突觸商用還面臨不少困難,但它是神經形態計算設備發展史上的里程碑,可用
突觸核蛋白抗細胞凋亡作用
Alves da Costa等發現與模擬轉染的TSM1型神經元對照,野生型的α-突觸核蛋白能夠顯著地減弱三種不同的細胞凋亡誘導劑星孢菌素、依托泊苷和神經酰胺C2對胞內半胱天冬酶(caspase)的激活[30],同樣這可能與α-突觸核蛋白的伴侶樣蛋白作用有關;Ostrerova等也發現α-突觸核蛋
超導突觸處理信息能力超人腦
通過高速電子探針連接的人造突觸。圖片來源:《自然》雜志官網 據英國《自然》雜志網站近日報道,美國科學家研制出一款模擬人腦神經中樞處理過程的超導突觸,其信息處理速度比人腦更快,而且更高效。研究人員表示,盡管該人造突觸商用還面臨不少困難,但它是神經形態計算設備發展史上的里程碑,可用于未來類腦計算機
關于突觸核蛋白的特性介紹
它的結構很大程度上依賴于其所處的細胞內環境,并且會表現出不同的結構如單體、寡聚體、原纖維和纖維等,病理狀態下的突觸核蛋白容易聚集形成不溶性的纖維蛋白沉淀,最終導致神經細胞死亡。人類基因學的研究證明了α-突觸核蛋白基因突變在家族性的帕金森病中的主要致病地位,并且α-突觸核蛋白的聚集有類似朊蛋白樣的
關于突觸核蛋白的基本介紹
α-突觸核蛋白是一種在中樞神經系統突觸前及核周表達的可溶性蛋白質,它與帕金森病的發病機制和相關功能障礙密切相關,是路易小體的主要成分。 α-突觸核蛋白的功能多樣,可能參與到突觸結構的維持、神經的可塑性、學習、記憶、發生、細胞粘附、磷酸化、細胞分化以及多巴胺的攝取調控等許多方面。
關于突觸核蛋白的結構介紹
總體結構 α-突觸核蛋白是位于4q21-22SNCA基因[16]編碼的一個小分子蛋白質,分子量為19kDa,,由140個氨基酸構成,可以分成三個部分: 氨基端: (aa 1~60)包含了5個家族性帕金森病的突變位點以及高度保守的11個氨基酸中組成的KTKEGV 7模體重復序列,易形成兩性α
簡述突觸核蛋白的發現史
突觸核蛋白最初于1988年由Maroteaux等利用純化的抗膽堿能囊泡抗體在電鱘體內發現,并且確定其分布在神經突觸前末梢和核周[1,2],同樣突觸核蛋白也在阿爾滋海默病的老年斑塊內發現,但沒有β-淀粉樣蛋白含量高,突觸核蛋白的中間部分(aa61-65)被命名為非β-淀粉樣結構(NAC)。至今人們
突觸核蛋白的發病機制介紹
損害線粒體:Nakamura等發現在哺乳動物的多種細胞中過量表達α-突觸核蛋白可以造成線粒體的裂解,而在胞內的其他細胞器的形態變化很小(如高爾基復合體),α-突觸核蛋白不抑制線粒體的融合而表現出促進其分裂,并且不依靠線粒體分裂時需要的主要分裂蛋白Drp1[42];另外過量表達的α-突觸核蛋白能夠
睡眠對大腦突觸的影響,缺覺會擾亂突觸蛋白磷酸化周期
最近收到了一條來自讀者的吐槽:你們成天說熬夜不好,但是卻每天晚上十點半才推送,這是誠心不讓我們早睡…… 對不起,我們誠懇道歉(但絕對不改)。不過我們的希望是,大家能看科研結果看困直接睡著(不是 睡好覺到底多重要?我眼前就有一個現成的例子。因為昨天上線了音頻課,亞慧老師半宿沒睡,今天早上來了,
Nature子刊解析巨突觸的形成
人類和絕大多數哺乳動物,能夠相當敏銳的判斷聲音來源的空間位置。聲音信息到達左右兩耳的時間存在微小的延遲,為了判斷聲音的來源,大腦發展出了能夠快速檢測上述延遲的環路。人們已知的最大腦部突觸,就是這一環路的核心。現在,科學家們揭示了這些巨突觸形成的機制,這一機制使我們能夠極為有效的處理聽覺
突觸發育也有晝夜節律性
日出而作,日落而息。在人類行為的背后,是生物鐘的調控。發育或許也是如此。日前,我國科學家以經典的視網膜-視頂蓋突觸為模型,運用在體雙光子長時程成像,發現了發育早期突觸形成速率存在晝夜節律性,為生物鐘參與調節動物發育過程奠定了重要理論基礎,為認識神經環路連接建立的發育規律提供了重要實驗依據。 該